

Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (Flow, Temperature, Level and Pressure), with SCADA and PID Control

Key features:

- > Advanced Real-Time SCADA and PID Control.
- > Open Control + Multicontrol + Real-Time Control.
- > Specialized EDIBON Control Software based on LabVIEW.
- > National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- > Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- > Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- > Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

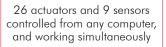
OPEN CONTROL
MULTICONTROL
REAL TIME CONTROL

www.edibon.com

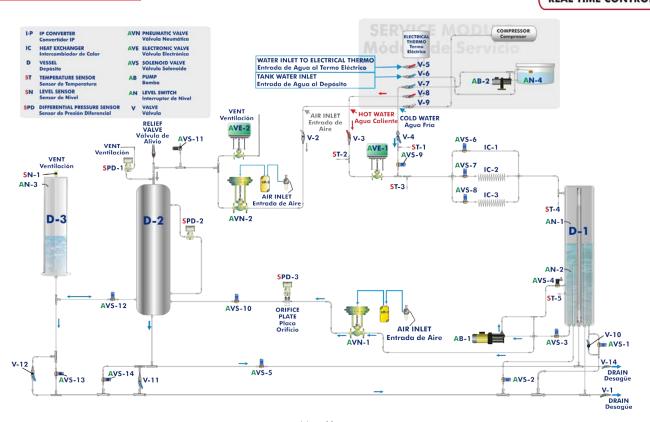
⇔PRODUCTS

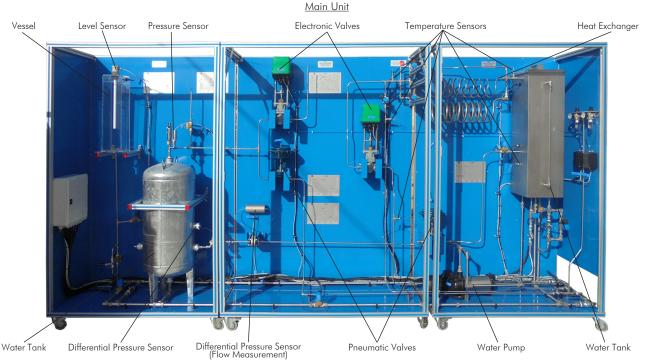
September 2015 - MECHATRONICS & COMPUMECHATRONICS AND 100.- PROCESS CONTROL

For more information about Key Features, click here


GENERAL DESCRIPTION

The Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (Flow, Temperature, Level and Pressure), "CPIC", is a unit, that offers, on a reasonable laboratory scale, the different process and elements that are commonly used by any kind the industry. It also shows the complexity that can take place while controlling in processes the same variable.


"CPIC" is made up of a main unit where the different elements are installed and a service module that provides cold and hot water, as well as compressed air, necessary for the unit to work.


This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process.

PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION

OPEN CONTROL
MULTICONTROL
REAL TIME CONTROL

With this unit there are several options and possibilities:

- Main items: 1, 2, 3, 4, 5 and 6. - Optional items: 7, 8, 9, 10 and 11.

Let us describe first the main items (1 to 6):

① CPIC. Unit:

Anodized aluminum frame and panels made of painted steel.

The unit includes wheels to facilitate its mobility.

Main metallic elements made of stainless steel.

Diagram in the front panel with distribution of the elements similar to the real one.

Main Unit contains the following elements:

Two pneumatic valves with C_v : 0.25. Actuator (I/P) from 0.2 to 1.0 bar for electric signal from 4 to 20 mA.

Two electronic valves for electric signal from 4 to 20mA.

Twelve solenoid valves, normally closed.

Two solenoid valves, normally open, placed at the air loop and flow loop.

Three differential pressure sensors. They have a range from -100 to 100 psi.

Five temperature sensors, "J" type. These sensors are placed along the unit to control the temperature in different lines.

Level sensor (effective length: 300 mm).

Four level switches.

Water pump: maximum water flow: 106 1/min and maximum pressure: 7 bar.

Stainless steel water tank: maximum capacity: 100 l. It has five drains at its lower part. Two of them are placed at different height, middle and top of the tank.

Stainless steel tank:

Maximum capacity: 200 l. Maximum pressure: 16 bar.

It has eight takings, but only six are used in this unit.

In the upper part, there is a safety valve that opens when the pressure exceeds 4 bar.

Two takings are used to measure the water height by the means of a differential pressure sensor. Other differential pressure sensor gives us the inner pressure.

Heater unit:

A tank with a maximum capacity of 80 I and an electrical resistance of 1.2 kW as maximum electrical power. The temperature control is placed in the electrical resistance.

It has a safety valve and purge valve.

The lower part of the unit has an inlet pipe (cold water) and an outlet pipe (hot water).

Compressor unit:

Maximum pressure: 10 bar.

This unit has a regulating valve with a manometer to fix the outlet maximum pressure.

Water system:

Water tank, capacity: 400 l. Water pump: 3.0 bar and 2500 l/h.

The inlet pipe of the tank has an automatic filling system.

Drain valve in the water tank.

The complete unit includes as well:

Advanced Real-Time SCADA and PID Control.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on LabVIEW.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Unit: CPIC

② CPIC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system.

<u>Control interface box with process diagram in the front panel</u> and with the same distribution that the different elements located in the unit, for an easy understanding by the student.

All sensors, with their respective signals, are properly manipulated from -10V. to +10V. computer output. Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors.

Single cable between the control interface box and computer.

The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure.

Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process.

Real time curves representation about system responses.

Storage of all the process data and results in a file.

Graphic representation, in real time, of all the process/system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.

All the actuators and sensors values and their responses are displayed on only one screen in the

Shield and filtered signals to avoid external interferences.

Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.

Real time PID and on/off control for pumps, compressors, heating elements, control valves, etc.

Real time PID control for parameters involved in the process simultaneously

Proportional control, integral control and derivative control, based on the real PID mathematical **formula, by changing the values, at any time**, of the three control constants (proportional, integral and derivative constants).

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Possibility of automatization of the actuators involved in the process.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

3 DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.

Analog input:

Number of channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536.

Sampling rate up to: 250 KS/s (kilo samples per second).

Input range (V) = ± 10 V. Data transfers = DMA, interrupts, programmed I/0. DMA channels = 6.

Analog output:

Number of channels=2. Resolution=16 bits, 1 in 65536.

Maximum output rate up to: 900 KS/s.

Output range(V)=±10 V. Data transfers=DMA, interrupts, programmed I/O.

Digital Input/Output:

Number of channels=24 inputs/outputs. D0 or DI Sample Clock frequency: 0 to 100 MHz.

Timing: Number of Counter/timers=4. Resolution: Counter/timers: 32 bits.

④ CPIC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. Compatible with the industry standards.

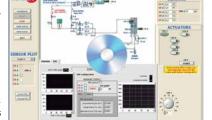
Registration and visualization of all process variables in an automatic and simultaneous way. Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Analog and digital PID control.

PID menu and set point selection required in the whole work range.

Management, processing, comparison and storage of data. Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.


It allows the registration of the alarms state and the graphic representation in real time. Comparative analysis of the obtained data, after the process and modification of the conditions during the process.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic

CPIC/CIB

CPIC/CCSOF

⑤ Cables and Accessories, for normal operation.

6 Manuals:

This unit is **supplied with 8 manuals**: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

*References 1 to 6 are the main items: CPIC + CPIC/CIB + DAB + CPIC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH THE MAIN ITEMS

- Familiarization with the different components of the system and their symbolic representation. Identification of components and description of their functions.
- 2.- The auxiliary systems: air and hot water supply.
- 3.- Flow sensors calibration.
- 4.- Temperature sensors calibration.
- 5.- Level sensor calibration.
- 6.- I/P converter calibration.
- 7.- Flow control loop (on/off).
- 8.- Flow control loop (proportional).
- 9.- Flow control loop (P+1).
- 10.-Flow control loop (P+D).
- 11.-Flow control loop (P+I+D).
- 12.-Adjust of the flow controller constants (Ziegler-Nichols).
- 13.-Adjust of the flow controller constants (reaction curves).
- 14.-Search of simple shortcomings in the loop of flow control.
- 15.-Temperature control loop (on/off).
- 16.-Temperature control loop (proportional).
- 17.-Temperature control loop (P+I).
- 18.-Temperature control loop (P+D).
- 19.-Temperature control loop (P+I+D).
- 20.-Adjust of the temperature controller constants (minimum area or reduction rate).
- 21.-Adjust of the temperature controller constants (minimum disturbance criterion).
- 22.-Adjust of the temperature controller constants (minimum width criterion).
- 23.-Study of the retards for speed/distance, exemplified through the temperature control loop.
- 24.-Study of the energy lost in the temperature control loop.
- 25.-Search of simple shortcomings in temperature control loop.
- 26.-Level control loop (on/off).
- 27.-Level control loop (proportional).
- 28.-Level control loop (P+I).
- 29.-Level control loop (P+D).
- 30.-Level control loop (P+I+D).
- 31.-Adjust of the level controller constants (minimum area or reduction rate).
- 32.-Adjust of the level controller constants (minimum disturbance criterion).
- 33.-Adjust of the level controller constants (minimum width criterion)
- 34.-Search of simple shortcomings in level control loop.
- 35.-Pressure control loop (on/off).
- 36.-Pressure control loop (proportional).
- 37.-Pressure control loop (P+I).
- 38.-Pressure control loop (P+D).
- 39.-Pressure control loop (P+I+D).
- 40.-Adjust of the pressure controller constants (minimum area or reduction rate).
- 41.-Adjust of the pressure controller constants (minimum disturbance criterion).

- 42.-Adjust of the pressure controller constants (minimum width criterion).
- 43.-Search of simple shortcomings in the pressure control loop.
- 17.-Temperature control loop (P+I).
- 18.-Temperature control loop (P+D).
- 19.-Temperature control loop (P+I+D).
- 20.-Adjust of the temperature controller constants (minimum area or reduction rate).
- 44. The use of the controllers in cascade, exemplified with the level/flow control loop.
- 45.-Adjust of cascade control constants (minimum area or reduction rate).
- 46.-Adjust of cascade control constants (minimum disturbance criterion).
- 47.-Adjust of cascade control constants (minimum width criterion).
- 48.-Search of simple shortcomings in cascade control loop.
- 49.-Practical operation of the control plant to some wanted specific values: transfers without interferences.
- 50.-Calculation of the fluid flow in function of the differential pressure sensor.

Other possibilities to be done with this Unit:

- 51.-Many students view results simultaneously.
 To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
- 52.-Open Control, Multicontrol and Real Time Control.
 This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time
- 53.-The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- 54.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 55.-This unit can be used for doing applied research.
- 56.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 57.-Control of the CPIC unit process through the control interface box without the computer.
- 58.-Visualization of all the sensors values used in the CPIC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

www.edibon.com

6

REQUIRED SERVICES

- Electric supply: three-phase, 380 V/50 Hz or 220 V/60 Hz, 10 KW.
- Water supply: 45 1/min with 3 bar of minimum pressure.
- Computer.

DIMENSIONS AND WEIGHTS

CPIC:

Main Unit:

-Dimensions: 5000 x 1500 x 2500 mm approx.

(196.85 x 59.05 x 98.42 inches approx.)

-Weight: 1000 Kg approx.

(2200 pounds approx.)

Service Module:

-Dimensions: 2000 x 1500 x 2000 mm approx.

(78.74 x 59.05 x 78.74 inches approx.)

-Weight: 200 Kg approx.

(440 pounds approx.)

Control Interface Box:

-Dimensions: 490 x 450 x 470 mm approx.

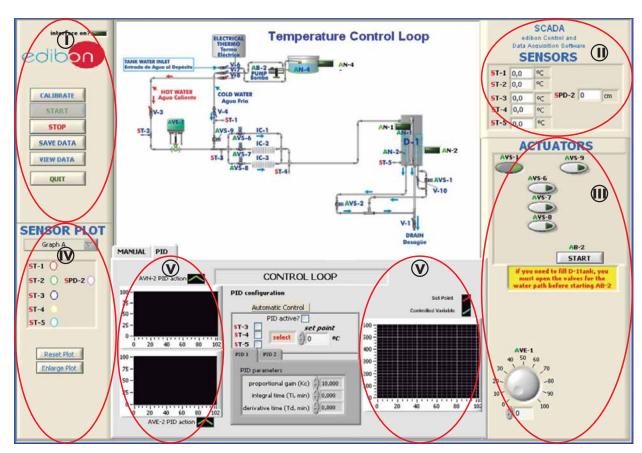
(19.29 x 17.71 x 18.5 inches approx.)

-Weight: 20 Kg approx.

(44 pounds approx.)

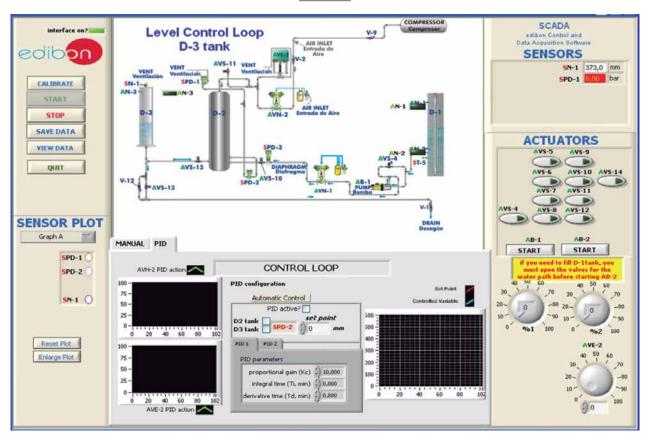
AVAILABLE VERSIONS

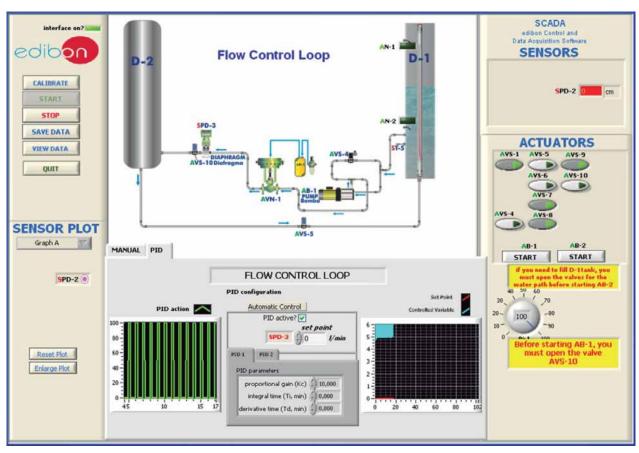
Offered in this catalog:


- CPIC. Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (Flow, Temperature, Level and Pressure).

Offered in other catalogs:

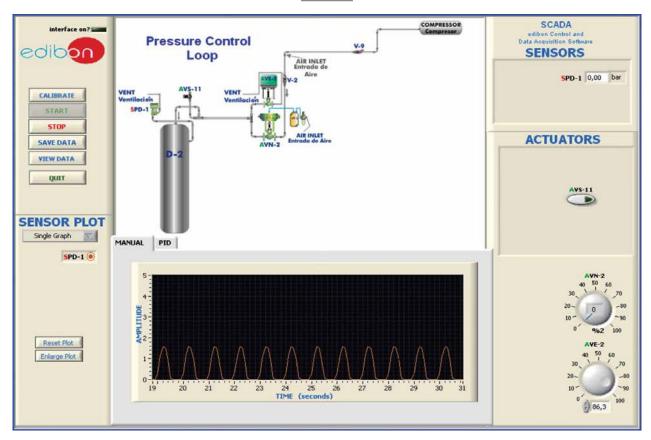
- CPIC-C. Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (only Flow).
- CPIC-T. Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (only Temperature).
- CPIC-N. Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (only Level).
- CPIC-P. Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (only Pressure).


SCADA and PID Control Main screen


- Main software operation possibilities.
- (1) Sensors displays, real time values, and extra output parameters. Sensors: ST=Temperature sensor. SPD=Differential pressure sensor.
- (II) Actuators controls. Actuators: AB=Pump. AVS=Solenoid valve. AVE=Electronic valve.
- (N) Channel selection and other plot parameters.
- Real time graphics displays.

SCADA and PID Control Main screen

Sensors: SN = Level sensor. SPD = Differential pressure sensor.


Actuators: AB=Pump. AVS=Solenoid valve. AVE=Electronic valve. AVN=Pneumatic valve.

Sensors: SPD=Differential pressure sensor.

Actuators: AB=Pump. AVS=Solenoid valve. AVN=Pneumatic valve.

SCADA and PID Control Main screen

Sensors: SPD=Differential pressure sensor.

Actuators: AVS=Solenoid valve. AVE=Electronic valve. AVN=Pneumatic valve.

Software for Sensors Calibration

Example of screen

The teacher and the students can calibrate the unit with a password provided by EDIBON. The teacher can restore the factory calibration any time.

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 11.

All these items try to give more possibilities for:

- a) Industrial configuration. (PLC)
- b) Technical and Vocational Education configuration. (ICAI and FSS)
- c) Multipost Expansions options. (MINI ESN and ESN)

a) Industrial configuration

7 PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:

Metallic box

Circuit diagram in the module front panel.

Front panel:

Digital inputs (X) and Digital outputs (Y) block:

16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).

14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).

Analog inputs block:

16 Analog inputs (-10 V. to + 10 V.) (through SCSI connector).

Analog outputs block:

4 Analog outputs (-10 V. to + 10 V.) (through SCSI connector).

High visibility and multiple functions. Display of a highly visible status, Recipe function, Bar graph function, Flow display function, Alarm list, Multi language function. True type fonts.

Back panel:

Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.

Inside:

Power supply outputs: 24 Vdc, 12 Vdc, -12 Vdc, 12 Vdc variable.

Panasonic PLC:

High-speed scan of 0.32 μ sec. for a basic instruction.

Program capacity of 32 Ksteps, with a sufficient comment area.

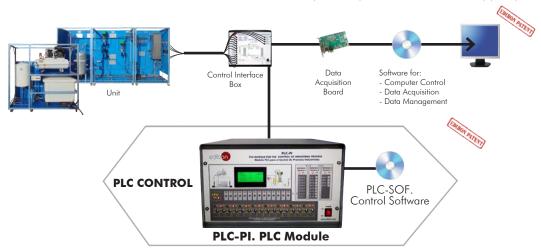
Power supply input (100 to 240 V AC).

DC input: 16 (24 V DC). Relay output: 14.

High-speed counter.

Multi-point PID control.

Digital inputs/outputs and analog inputs/outputs Panasonic modules.


Communication RS232 wire to computer (PC).

Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.). Weight: 30 Kg. approx. (66 pounds approx.).

-CPIC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (Flow, Temperature, Level and Pressure) (CPIC).

Practices to be done with PLC-PI:

- Control of the particular unit process through the control interface box without the computer.
 Visualization of all the sensors values used in the particular unit process.
- 3.- Calibration of all sensors included in the particular unit process.
- 4.- Hand on of all the actuators involved in the particular unit process
- 5.- Realization of different experiments, in automatic way, without having in front the particular unit. (These experiments can be decided previously).
- Simulation of outside actions, in the cases do not exist hardware elements. (Example: test of complementary tanks, complementary industrialenvironment to the process to be studied, etc).
- PLC hardware general use.
- 8.- PLC process application for the particular unit.
- PLC structure.
- 10.-PLC inputs and outputs configuration.
- 11.-PLC configuration possibilities.
- 12.-PLC program languages.

- 13.-PLC different programming standard languages (ladder diagram (LD), structured text (ST), instructions list (IL), sequential function chart (SFC), function block diagram (FBD)).
 14.-New configuration and development of new process.
- 15.-Hand on an established process
- 16.-To visualize and see the results and to make comparisons with the particular unit process.
- Possibility of creating new process in relation with the particular unit.
- 18.-PLC Programming Exercises. 19.-Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

8 CPIC/ICAL. Interactive Computer Aided Instruction Software System.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

This software is optional and can be used additionally to items (1 to 6).

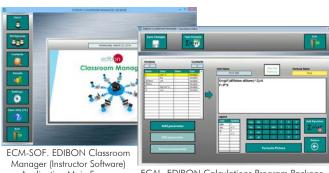
- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).

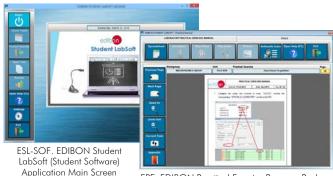

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

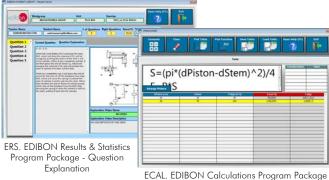
Innovative features:


- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

For more information see **ICAI** catalogue. Click on the following link: www.edibon.com/en/files/expansion/ICAI/catalog

Instructor Software


Application Main Screen ECAL. EDIBON Calculations Program Package - Formula Editor Screen


ETTE. EDIBON Training Test & Exam Program Package - Main Screen with Numeric Result Question

Student Software

Scores Histogram

EPE. EDIBON Practical Exercise Program Package Main Screen

Main Screen

12

OPIC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

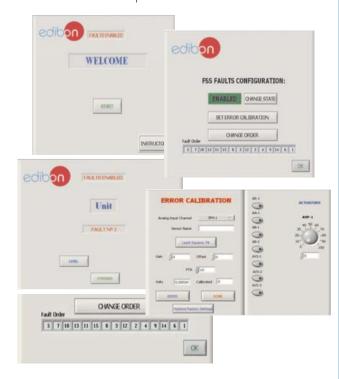
- An incorrect calibration is applied to them.
- Non-linearity

Faults affecting the actuators:

- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.


On/off faults:

- Several on/off faults can be included.

For more information see **FSS** catalogue. Click on the following link:

www.edibon.com/en/files/expansion/FSS/catalog

Example of some screens

c) Multipost Expansions options

(i) MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see $\mbox{MINI ESN}$ catalogue. Click on the following link:

www.edibon.com/en/files/expansion/MINI-ESN/catalog

MINI ESN. **EDIBON Mini Scada-Net System** 1 UNIT= up to 30 STUDENTS can work simultaneously Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (Flow, Temperature, Level and Pressure) (CPIC) Software for: Computer Control Control Data Acquisition Interface Box Data Management nstructors Mini Scada-Net Central Computer Software LOCAL NET FOR 30 STUDENTS OPEN CONTROL Note: The MINI ESN system can be used with MULTICONTROL any EDIBON computer REAL TIME CONTROL

controlled unit

11) ESN. EDIBON Scada-Net Systems.

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students.

13

For more information see **ESN** catalogue. Click on the following link:

www.edibon.com/en/files/expansion/ESN/catalog

MULTI STUDENT POST

ORDER INFORMATION

Main items (always included in the supply)

Minimum supply always includes:

- (1) Unit: CPIC. Computer Controlled Process Control Plant with Industrial Instrumentation and Service Module (Flow, Temperature, Level and Pressure).
- 2 CPIC/CIB. Control Interface Box.
- 3 DAB. Data Acquisition Board.
- (5) Cables and Accessories, for normal operation.
- Manuals.

*IMPORTANT: Under CPIC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.

Optional items (supplied under specific order)

- a) Industrial configuration
- ⑦ PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):
 - PCL-PI. PLC Module.
 - CPIC/PLC-SOF. PLC Control Software.

b) Technical and Vocational Education configuration

- (B) CPIC/ICAI. Interactive Computer Aided Instruction Software System.
- **9** CPIC/FSS. Faults Simulation System.

c) Multipost Expansions options

- MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.
- ① ESN. EDIBON Scada-Net Systems.

TENDER SPECIFICATIONS (for main items)

① CPIC. Unit:

Anodized aluminum frame and panels made of painted steel.

The unit includes wheels to facilitate its mobility.

Main metallic elements made of stainless steel

Diagram in the front panel with distribution of the elements similar to the real one.

Main Unit contains the following elements:

Two pneumatic valves with C₂: 0.25. Actuator (I/P) from 0.2 to 1.0 bar for electric signal from 4 to 20 mA.

Two electronic valves for electric signal from 4 to 20mA.

Twelve solenoid valves, normally closed.
Two solenoid valves, normally open, placed at the air loop and flow loop.
Three differential pressure sensors. They have a range from -100 to 100 psi.
Five temperature sensors, "J" type. These sensors are placed along the unit to control the temperature in different lines.
Level sensor (effective length: 300 mm).

Four level switches

Water pump: maximum water flow: 106 1/min and maximum pressure: 7 bar.
Stainless steel water tank: maximum capacity: 100 1. It has five drains at its lower part. Two of them are placed at different height, middle and top of the tank.

Stainless steel tank:

Maximum capacity: 200 l. Maximum pressure: 16 bar.

It has eight takings, but only six are used in this unit.
In the upper part, there is a safety valve that opens when the pressure exceeds 4 bar.
Two takings are used to measure the water height by the means of a differential pressure sensor. Other differential pressure sensor gives us the inner pressure

Service Module contains the following elements:

Heater unit:

A tank with a maximum capacity of 80 I and an electrical resistance of 1.2 kW as maximum electrical power. The temperature control is placed in

the electrical resistance. It has a safety valve and purge valve. The lower part of the unit has an inlet pipe (cold water) and an outlet pipe (hot water).

Compressor unit:

Maximum pressure: 10 bar.

This unit has a regulating valve with a manometer to fix the outlet maximum pressure.

Water system:

Water tank, capacity: 400 I. Water pump: 3.0 bar and 2500 I/h. The inlet pipe of the tank has an automatic filling system.

Drain valve in the water tank

The complete unit includes as well:

Advanced Real-Time SCADA and PID Control.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on LabVIEW.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time. Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple

students to simultaneously operate many units in a network.

② CPIC/CIB. Control Interface Box:

CPIC/CIB. Control Interface Box:
The Control Interface Box is part of the SCADA system.
Control interface box with process diagram in the front panel.
The unit control elements are permanently computer controlled.
Simultaneous visualization in the computer of all parameters involved in the process.
Calibration of all sensors involved in the process.

Real time curves representation about system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. Shield and filtered signals to avoid external interferences.

Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.

Real time PID control for parameters involved in the process simultaneously.

Proportional control, integral control and derivative control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

(3) DAB. Data Acquisition Board:
The Data Acquisition board is part of the SCADA system.
PCI Express Data acquisition board (National Instruments) to be placed in a computer slot.
Analog input: Channels= 16 single-ended or 8 differential. Resolution=16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).
Analog output: Channels=2. Resolution=16 bits, 1 in 65536.
Digital Input/Output: Channels=24 inputs/outputs.

Q CPIC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system. Compatible with the industry standards.

Compatible with the industry standards. Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters. Analog and digital PID control. PID menu and set point selection required in the whole work range. Management, processing, comparison and storage of data. Sampling velocity up to 250 KS/s (kilo samples per second). Calibration system for the sensors involved in the process. It allows the registration of the alarms state and the graphic representation in real time. Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whitehoard a projector or an electronic whiteboard

Cables and Accessories, for normal operation.

6 Manuals:

This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

Exercises and Practical Possibilities to be done with the Main Items

- 1.- Familiarization with the different components of the system and their symbolic representation. Identification of components and description of their functions
- 2.- The auxiliary systems: air and hot water supply.
- 3.- Flow sensors calibration.
- 4.- Temperature sensors calibration.
- 5.- Level sensor calibration.
- 6.- I/P converter calibration.
- 7.- Flow control loop (on/off).
- 8.- Flow control loop (proportional).
- 9.- Flow control loop (P+I).
- 10.-Flow control loop (P+D).
- 11.-Flow control loop (P+I+D).
- 12.-Adjust of the flow controller constants (Ziegler-Nichols).
- 13.-Adjust of the flow controller constants (reaction curves).
- 14.-Search of simple shortcomings in the loop of flow control.
- 15.-Temperature control loop (on/off).
- 16.-Temperature control loop (proportional).
- 17.-Temperature control loop (P+I).
- 18.-Temperature control loop (P+D).
- 19.-Temperature control loop (P+I+D).
- 20.-Adjust of the temperature controller constants (minimum area or reduction rate).
- 21.-Adjust of the temperature controller constants (minimum disturbance criterion).
- 22.-Adjust of the temperature controller constants (minimum width criterion).
- 23.-Study of the retards for speed/distance, exemplified through the temperature control loop.
- 24.-Study of the energy lost in the temperature control loop.
- 25.-Search of simple shortcomings in temperature control loop.
- 26.-Level control loop (on/off).
- 27.-Level control loop (proportional).
- 28.-Level control loop (P+I).
- 29.-Level control loop (P+D).
- 30.-Level control loop (P+I+D).
- 31.-Adjust of the level controller constants (minimum area or reduction rate).
- 32.-Adjust of the level controller constants (minimum disturbance criterion).
- 33.-Adjust of the level controller constants (minimum width criterion)
- 34.-Search of simple shortcomings in level control loop.
- 35.-Pressure control loop (on/off).
- 36.-Pressure control loop (proportional).
- 37.-Pressure control loop (P+I).
- 38.-Pressure control loop (P+D).
- 39.-Pressure control loop (P+I+D).
- 40.-Adjust of the pressure controller constants (minimum area or reduction rate).
- 41.-Adjust of the pressure controller constants (minimum disturbance criterion). 42.-Adjust of the pressure controller constants (minimum width criterion).
- 42.-Adjust of the pressure controller constants (minimum wiath criterion)
- 43.-Search of simple shortcomings in the pressure control loop.
- 17.-Temperature control loop (P+I).
- 18.-Temperature control loop (P+D).
- 19.-Temperature control loop (P+I+D).
- 20.-Adjust of the temperature controller constants (minimum area or reduction rate).
- 44.-The use of the controllers in cascade, exemplified with the level/ flow control loop.
- 45.-Adjust of cascade control constants (minimum area or reduction rate).
- 46.-Adjust of cascade control constants (minimum disturbance criterion).
- 47.-Adjust of cascade control constants (minimum width criterion).
- 48.-Search of simple shortcomings in cascade control loop.
- 49. Practical operation of the control plant to some wanted specific values: transfers without interferences.
- 50.-Calculation of the fluid flow in function of the differential pressure sensor.

Other possibilities to be done with this Unit:

- 51.-Many students view results simultaneously.
 - To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
- 52.-Open Control, Multicontrol and Real Time Control.
 - This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.
- 53.-The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- 54.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 55. This unit can be used for doing applied research.
- 56.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 57.-Control of the CPIC unit process through the control interface box without the computer.
- 58.-Visualization of all the sensors values used in the CPIC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.
- 16 www.edibon.com

TENDER SPECIFICATIONS (for optional items)

a) Industrial configuration

PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:

Metallic box.

Circuit diagram in the module front panel.

Digital inputs (X) and Digital outputs (Y) block: 16 Digital inputs. 14 Digital outputs.

Analog inputs block: 16 Analog inputs.

Analog outputs block: 4 Analog outputs.

Touch screen.
Panasonic PLC:

High-speed scan of $0.32~\mu$ sec. Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.

Digital inputs/outputs and analog inputs/outputs Panasonic modules.

-CPIC/PLC-SOF. PLC Control Software:

For this particular unit, always included with PLC supply.

Practices to be done with PLC-PI:

- 1.- Control of the particular unit process through the control interface box without the computer.
- 2.- Visualization of all the sensors values used in the particular unit process.
- 3.- Calibration of all sensors included in the particular unit process.
- 4.- Hand on of all the actuators involved in the particular unit process.
- 5. Realization of different experiments, in automatic way, without having in front the particular unit. (These experiments can be decided previously).
- 6.- Simulation of outside actions, in the cases do not exist hardware elements. (Example: test of complementary tanks, complementary industrialenvironment to the process to be studied, etc).
- 7.- PLC hardware general use.
- 8.- PLC process application for the particular unit.
- 9.- PLC structure.
- 10.-PLC inputs and outputs configuration.
- 11.-PLC configuration possibilities.
- 12.-PLC program languages.
- 13.-PLC different programming standard languages (ladder diagram (LD), structured text (ST), instructions list (IL), sequential function chart (SFC), function block diagram (FBD)).
- 14.-New configuration and development of new process.
- 15.-Hand on an established process.
- 16.-To visualize and see the results and to make comparisons with the particular unit process.
- 17.-Possibility of creating new process in relation with the particular unit.
- 18.-PLC Programming Exercises.
- 19.-Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

® CPIC/ICAI. Interactive Computer Aided Instruction Software System.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc...so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.
- ESL-SOF. EDIBON Student Labsoft (Student Software).

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

17

Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

© CPIC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit.

The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:

- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.

Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

c) Multipost Expansions options

MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

- Instructor's computer.
- Students' computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- MINI ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

* Specifications subject to change without previous notice, due to the convenience of improvement of the product.

C/ Del Agua, 14. Polígono Industrial San José de Valderas. 28918 LEGANÉS. (Madrid). ESPAÑA - SPAIN.

Tel.: 34-91-6199363 Fax: 34-91-6198647

E-mail: edibon@edibon.com Web: www.edibon.com

Edition: ED01/18 Date: January/2018

REPRESENTATIVE:			