

Computer Controlled Axial Pump Bench, with SCADA

(Computer not included in the supply)

Key features:

- Advanced Real-Time SCADA.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on Labview.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several quality standards.
- Optional CAL software helps the user perform calculations and comprehend the results.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here:

OPEN CONTROL MULTICONTROL REAL TIME CONTROL

Worlddidac Quality Charter Certificate (Worlddidac Member)

ISO 9000: Quality Management (for Design, Manufacturing, Commercialization and After-sales service)

Page 1

You

(environmental management)

INTRODUCTION •

The conversion of mechanical energy into hydraulic energy by machines is of great interest for most of engineers and technicians. The types of hydraulic machines available for this conversion vary considerably in principles and design.

Among all hydraulic machines, pumps are the most versatile ones, since they can be adapted to a great amount of exploitation conditions (powers, flows, heads, liquids, materials, etc.). The shape of the propelling element determines the kind of pump and gives it some specific features.

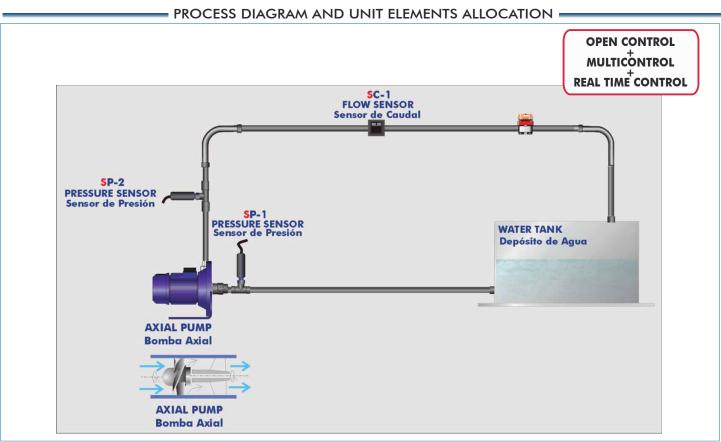
The PBAC unit allows the students to measure the operation characteristics of an axial flow pump: pump's manometric head, flow, torque and turning speed.

GENERAL DESCRIPTION

The axial pump unit (PBAC) is designed to study this type of pumps. It is a bench-top unit that consists of a computer controlled axial pump, a water tank and circulation pipes with a flow regulation valve. Besides, it includes the control elements required for the pump's testing: two pressure sensors and one flow sensor.

It is possible to control and measure the turning speed of the pump's motor, as well as to measure the transferred mechanical torque with a variable frequency drive.

The pump is installed in a system of pipes. As the circuit is closed, it prevents a continuous waste of water when working with it.


PBAC unit has instrumentation and sensors to allow the measurement, from the computer (PC), of the most typical parameters of the pumps:

- Motor turn speed.
- Total impelled flow.
- The admission and discharge pressure.
- Torque.
- Calculated values:
 - Total height.
 - Hydraulic power.
 - Mechanic power.
 - Efficiency.

Adjustable parameters, as:

- Motor speed and flow.
- Position of the flow control valve.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + a Data Acquisition Board + Computer Control and Data Acquisition Software Packages, for controlling the process and all parameters involved in the process.

COMPLETE TECHNICAL SPECIFICATIONS (for main items)

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③ DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI.

Analog input:

Number of **channels = 16** single-ended or 8 differential.

Resolution=16 bits, 1 in 65536.

Sampling rate up to: 250 KS/s (Kilo samples per second).

Input range (V)=±10V.

Data transfers=DMA, interrupts, programmed I/0.

DMA channels=6.

Analog output:

Number of **channels=2**.

Resolution=16 bits, 1 in 65536.

Maximum output rate up to: 833 KS/s.

Output range(V) = $\pm 10V$.

Data transfers=DMA, interrupts, programmed I/O.

Digital Input/Output:

Number of Channels=24 inputs/outputs.

D0 or DI Sample Clock frequency: 0 to 1 MHz.

Timing:

Number of **Counter/timers=2**.

Resolution: Counter/timers: 32 bits.

@PBAC/CCSOF. Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems.

Graphic and intuitive simulation of the process in screen.

Compatible with the industry standards.

Registration and visualization of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting

simultaneously on all process parameters.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time.

Comparative analysis of the obtained data, after the process and modification of the conditions during the process.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

© Cables and Accessories, for normal operation.

© Manuals: This unit is **supplied with 8 manuals**: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

* References 1 to 6 are the main items: PBAC + PBAC/CIB + DAB + PBAC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

PBAC/CCSOF

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH MAIN ITEMS

- 1.- Determination of the Q vs. r.p.m. Curve for an axial pump.
- 2.- Determination of the H vs. Q curve for different r.p.m. of an axial pump.
- 3.- Determination of the mechanical power vs flow for different r.p.m. of an axial pump.
- 4.- Determination of the η vs flow curve for different r.p.m. of an axial pump.
- 5.- Determination of an axial pump's map.

Additional practical possibilities to be done by the end customer:

- 6.- Sensors calibration.
- 7.- Obtaining the H(n) and N(n) curves.
- 8.- Study of the influence of pressure at the outlet.
- 9.- Calculation of the axial pump efficiency.

Other possibilities to be done with this Unit:

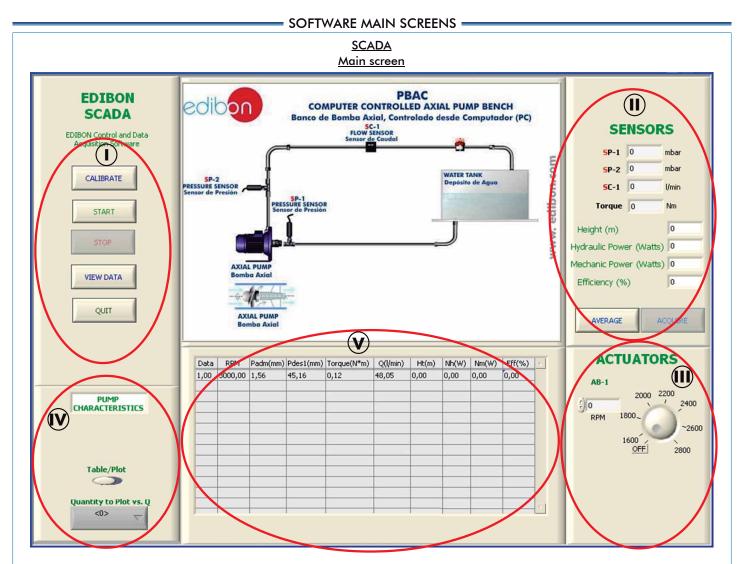
10.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

REQUIRED SERVICES

-Electrical supply: single-phase, 220 V/50 Hz. or 110 V/60 Hz. -Tap water supply to fill the tank.

-Computer (PC).


11.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gain; proportional, integral, derivate parameters; etc, in real time.

- 12.-The Computer Control System with SCADA allows a real industrial simulation.
- 13.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 14.-This unit can be used for doing applied research.
- 15.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 16.-Control of the PBAC unit process through the control interface box without the computer.
- 17.-Visualization of all the sensors values used in the PBAC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

	PBAC:		
	Unit:	-Dimensions:	1100 x 770 x 600 mm. approx. (43.31 x 30.31 x 23.62 inches approx.)
		-Weight:	80 Kg. approx. (176 pounds approx.)
Control-Interface Box:	-Dimensions:	490 x 330 x 310 mm. approx. (19.29 x 13 x 12.2 inches approx.)	
		-Weight:	10 Kg. approx. (22 pounds approx.)

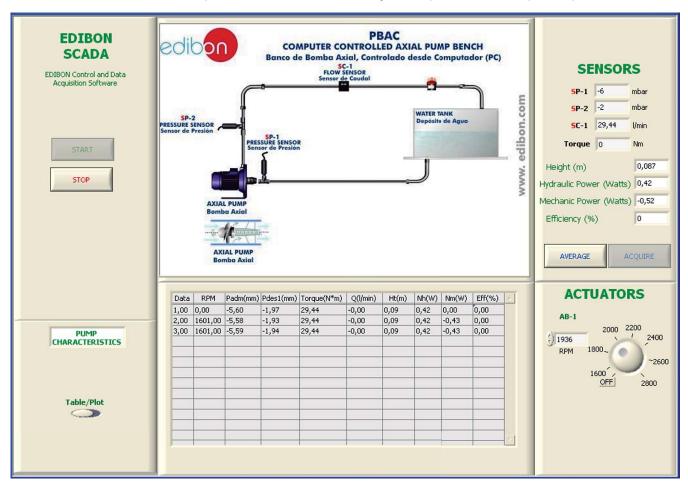
DIMENSIONS & WEIGHTS

() Main software operation possibilities.

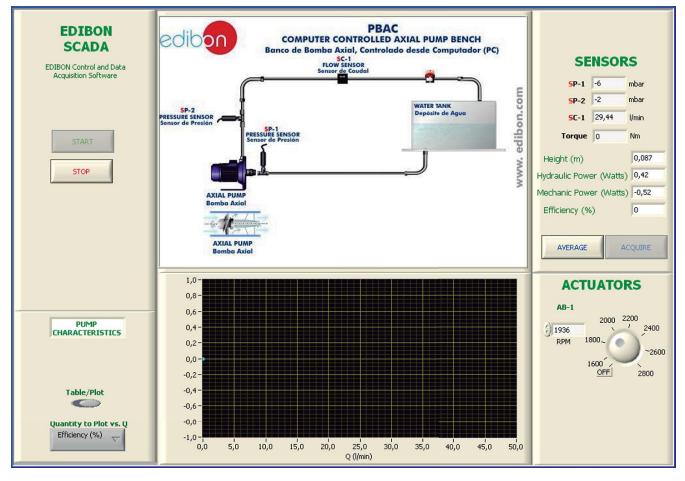
(I) Sensors displays, real time values, and extra output parameters. Sensors: SP= Pressure sensor. SC= Flow sensor.

Actuators controls. Actuator: AB= Pump.

Channel selection and other plot parameters.

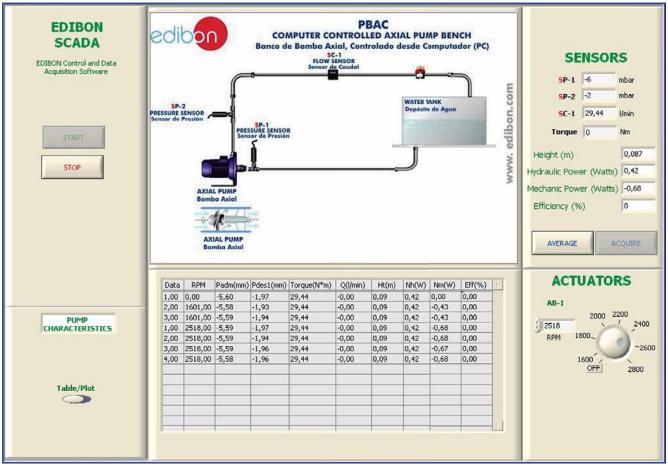

Real time graphics and tables displays.

Software for Sensors Calibration

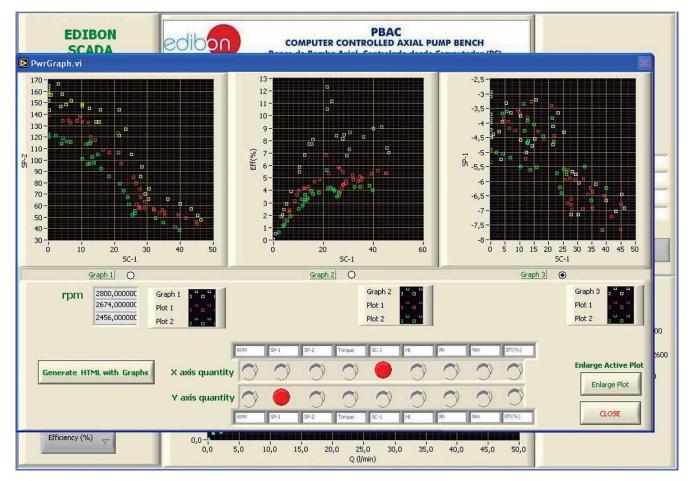

Analog Input Channel SP-2 AB-1 Sensor Name SP-2 3		MULTICALIBRATE						A8-1	A6-2 A6-3	AA-2
Least Squares FR 2-			Signed Technical Support					Port 0	AR-I	Port 2
Gain ()-0,652799 Offset ()-0,371019		2 (23.2113			J 100 J 1		-			
	Beferenc	Select	Sensors	Volts	Calibrated	Err (%)			Restore	estore Instructor
PTA ()10			ST-1	0,2046	22,3021	0,82		GAIN	OFFSET	ρ
Volts -0.4083 Calibrated -0,1045			ST-2	0,2292	23,483	0,28	ST-1	97,7605	2,3804	0
Volts -0,4083 Calibrated -0,1045			ST-3	0,2353	23,1522	0,05	ST-2	97,7997	1,0627	0
ENTER DONE			ST-4	0,2301	23,2113	0,01	ST-3	95,8345	0,6041	0
				0,1527	13,1629	10,04	51-4	96,6188	(0,9823	0
			500-1	-5,2792	172,5164	149,31		93,9573	1.1055	0
				-0,2362	-22,6609	45,87	SCC-1	162,04	1027,9537	0
			50-1	-0,1774	0,0319629	23,17		97,4967	(0,9678	0
				-0,2681	-60,4623	83,67	SC-1	0,679363	(0,1525	0
				-0,2251	0,4200	22,78		() 41,2123	()-49,4113	0
y using a free of charge code, the teacher and the students an calibrate the unit. ne teacher can recover his/her own calibration by using the DIBON code that we give free of charge.				-0,2529	-0,2529	23,46		0,27089	0,4817	0
				-0,2063	-0,1178	23,32		(ji	5)(0	0
		0		-0,2581	-226,9384	250,14		0,417958	0,0015	0
				-0,3634	-0,3634	23,57		679,1	210	0
					-0,275	23,46		Q1	0	0
			1	-0,2005	-0,2005	23,41		卵	20	0
6 6			Select all		Data taken	0	1000	101	20	0

SOME TYPICAL RESULTS =

The software enables to visualize on a simple table either the obtained data during a certain period of time or the specific required datum.



Data collected by the sensors can be represented vs. of time.



Some typical results

The motor's turning speed can be controlled through the software, so that its influence on all the parameters which define an Axial Pump can be observed.

The software allows the plotting of the characteristic curves of the Axial Pump and their comparison with the theoretical working curves.

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items (1 to 6) described, we can offer, as optional, other items from 7 to 12.

All these items try to give more possibilities for:

a) Industrial configuration. (PLC)

b) Technical and Vocational Education configuration. (CAI and FSS)

c) Higher Education and/or Technical and Vocational Education configuration. (CAL)

d) Multipost Expansions options. (Mini ESN and ESN)

a) Industrial configuration

② PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

PLC-PI. PLC Module:

Metallic box

Circuit diagram in the module front panel.

Front panel:

Digital inputs(X) and Digital outputs (Y) block:

16 Digital inputs, activated by switches and 16 LEDs for confirmation (red).

14 Digital outputs (through SCSI connector) with 14 LEDs for message (green).

Analog inputs block: 16 Analog inputs (-10 V. to + 10 V.) (through SCSI connector).

Analog outputs block:

4 Analog outputs (-10 V. to + 10 V.) (through SCSI connector).

Touch screen

High visibility and multiple functions. Display of a highly visible status. Recipe function. Bar graph function. Flow display function. Alarm list. Multi language function. True type fonts.

Back panel:

Power supply connector. Fuse 2A. RS-232 connector to PC. USB 2.0 connector to PC.

Inside:

Power supply outputs: 24 Vdc, 12 Vdc, -12 Vdc, 12 Vdc variable. Panasonic PLC:

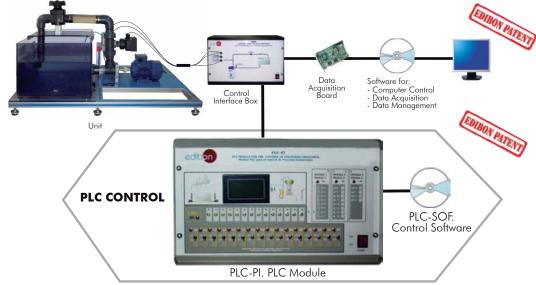
High-speed scan of 0.32 µsec. for a basic instruction.

Program capacity of 32 Ksteps, with a sufficient comment area. Power supply input (100 to 240 V AC).

- DC input: 16 (24 V DC)
- Relay output: 14.

High-speed counter.

Multi-point PID control.


Digital inputs/outputs and analog inputs/outputs Panasonic modules.

Communication RS232 wire to computer (PC)

Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 13 x 12.2 inches approx.). Weight: 30 Kg. approx. (66 pounds approx.).

-PBAC/PLC-SOF. PLC Control Software: For this particular unit, always included with PLC supply.

The software has been designed using Labview and it follows the unit operation procedure and linked with the Control Interface Box used in the Computer Controlled Axial Pump Bench (PBAC)

Practices to be done with PLC-PI:

- 1.- Control of the PBAC unit process through the control interface box without the computer.
- 2.- Visualization of all the sensors values used in the PBAC unit process.
- 3.- Calibration of all sensors included in the PBAC unit process.
- 4.- Hand on of all the actuators involved in the PBAC unit process.
- 5.- Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).
- 6.- Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
- 7.- PLC hardware general use and manipulation.
- 8.- PLC process application for PBAC unit.
- 9.- PLC structure.

- 10.- PLC inputs and outputs configuration.
 - 11.- PLC configuration possibilities.
 - 12.- PLC programming languages.
 - 13.- PLC different programming standard languages.
 - 14.- New configuration and development of new process.
 - 15.- Hand on an established process.
 - 16.- To visualize and see the results and to make comparisons with the PBAC unit process.
 - 17.- Possibility of creating new process in relation with the PBAC unit.
 - 18.- PLC Programming exercises.
 - 19.- Own PLC applications in accordance with teacher and student requirements.

b) Technical and Vocational Education configuration

BAC/CAI. Computer Aided Instruction Software System.

This complete package included two Softwares: the INS/SOF. Classroom Management Software (Instructor Software) and the PBAC/SOF. Computer Aided Instruction Software (Student Software).

This software is optional and can be used additionally to items (1 to 6).

This complete package consists on an Instructor Software (INS/SOF) totally integrated with the Student Software (PBAC/SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students. These, on the other hand, get a virtual instructor who helps them to deal with all the information on the subject of study.

- INS/SOF. Classroom Management Software (Instructor Software): The Instructor can:

Organize Students by Classes and Groups.

Create easily new entries or delete them.

Create data bases with student information.

Analyze results and make statistical comparisons.

Print reports.

Develop own examinations.

Detect student's progress and difficulties.

...and many other facilities.

- PBAC/SOF. Computer Aided Instruction Software (Student Software):

It explains how to use the unit, run the experiments and what to do at any moment. This Software contains:

Theory.

Exercises.

Guided Practices.

Exams.

For more information see **CAI** catalogue. Click on the following link:

www.edibon.com/products/catalogues/en/CAI.pdf

CAI

PBAC/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them.

There are several kinds of faults that can be grouped in the following sections:

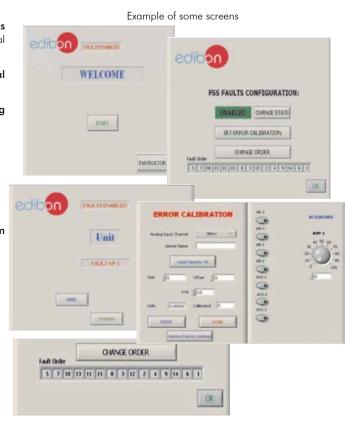
Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.

Faults affecting the actuators:

- Actuators channels interchange at any time during the program execution.

- Response reduction of an actuator.


Faults in the controls execution:

- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

For more information see **FSS** catalogue. Click on the following link: www.edibon.com/products/catalogues/en/FSS.pdf

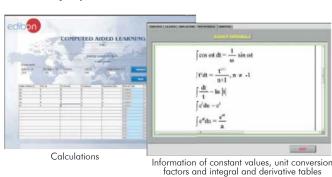
c) <u>Higher Education and/or Technical and Vocational Education configuration</u>

OPBAC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use, specifically developed by EDIBON. It is very useful for Higher Education level.

CAL is a class assistant that helps in making the necessary calculations to extract the right conclusions from data obtained during the experimental practices.

CAL will perform the calculations.


CAL computes the value of all the variables involved.

It allows to plot and print the results. Between the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

For more information see **CAL** catalogue. Click on the following link: <u>www.edibon.com/products/catalogues/en/CAL.pdf</u>

Mini ESN. EDIBON Mini Scada-Net System

Axial Pump Bench (PBAC)

30 Student Posts

OPEN CONTROL

MULTICONTROL

REAL TIME CONTROL

MULTI STUDENT POST

nstructor Central

Computer

LOCAL NET

Control Interface Box 1 UNIT = up to 30 STUDENTS can work simultaneously

Computer Control

Software: Computer Control+Data Acquisition+Data Management

Mini Scada-Net Software

Note: The Mini ESN

system can be used

with any EDIBON

computer controlled

unit.

d) Multipost Expansions options

1) Mini ESN. EDIBON Mini Scada-Net System.

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The Mini ESN system consists on the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/ students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can safe time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/Mini-ESN.pdf

ESN. EDIBON Scada-Net System.

This unit can be integrated, in future, in a Complete Laboratory with many Units and many Students.

For more information see **ESN** catalogue. Click on the following link: <u>www.edibon.com/products/catalogues/en/units/fluidmechanicsaerodynamics/esn-fluidmechanics/ESN-FLUID_MECHANICS.pdf</u>

ORDER INFORMATION =

Main items (always included in the supply)	Optional items (supplied under specific order) a) <u>Industrial configuration</u>							
Minimum supply always includes:	 PLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software): PCL-PI. PLC Module. PBAC/PLC-SOF. PLC Control Software. 							
① Unit: PBAC. Axial Pump Bench.								
 PBAC/CIB. Control Interface Box. DAB. Data Acquisition Board. 								
 PBAC/CCSOF. Computer Control + Data Acquisition + Data Management Software. 	b) <u>Technical and Vocational configuration</u> ③ PBAC/CAL Computer Aided Instruction Software System.							
(5) Cables and Accessories , for normal operation.	 PBAC/FSS. Faults Simulation System. 							
Manuals. * <u>IMPORTANT:</u> Under PBAC we always supply all the elements for immediate running as 1, 2, 3, 4, 5 and 6.	Analysis).							
	d) <u>Multipost Expansions options</u>							

TENDER SPECIFICATIONS (for main items)

1) PBAC. Unit:

Bench-top unit.

Anodized aluminium structure and panel in painted steel.

Diagram in the front panel with similar distribution to the elements in the real unit.

Computer controlled axial flow pump, located in an acrylic carcass, with propeller:

Maximum speed of the shaft: 2800 r.p.m.

Maximum flow: 48 I./min. Working pressure: 200 mbar.

Admission transversal section: 22.90 cm².

Discharge transversal section: 15.90 cm².

Head difference between admission and discharge: 4.1 cm.

Diameter of the shaft: 5 cm.

Three-phase motor. Its turning speed can be controlled and measured and its transferred mechanical torque can be measured.

Speed variation by means of a variable frequency drive.

Methacrylate transparent water tank with a capacity of 80 litres approximately.

Flow control valve.

Admission pressure sensor, range: 0-1 PSI.

Discharge pressure sensor, range: 0-1 PSI.

Flow sensor, range: 0-50 l./min.

By the previous sensors we can make measurement of the most representative parameters of the pump:

Speed.

Torque.

Total impelled flow.

Admission and discharge pressure.

The complete unit includes as well:

Advanced Real-Time SCADA.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on Labview.

National Instruments Data Acquisition board (250 KS/s, kilo samples per second).

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.

Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).

Designed and manufactured under several quality standards.

Optional CAL software helps the user perform calculations and comprehend the results.

This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

② PBAC/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system. Control interface box with process diagram in the front panel.

The unit control elements are permanently computer controlled.

Simultaneous visualization in the computer of all parameters involved in the process.

Calibration of all sensors involved in the process.

Real time curves representation about system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.

Shield and filtered signals to avoid external interferences.

Real time computer control with flexibility of modifications from the computer keyboard of the parameters, at any moment during the process.

Real time computer control for parameters involved in the process simultaneously.

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③ DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Data acquisition board (National Instruments) to be placed in a computer slot.

Analog input: Channels = 16 single-ended or 8 differential. Resolution = 16 bits, 1 in 65536. Sampling rate up to: 250 KS/s (kilo samples per second).

Analog output: Channels=2. Resolution=16 bits, 1 in 65536.

Digital Input/Output: Channels=24 inputs/outputs.

@ PBAC/CCSOF. Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with the industry standards.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second).

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time.

Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

(5) Cables and Accessories, for normal operation.

(a) Manuals: This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

Tender Specifications (for main items)

Exercises and Practical Possibilities to be done with Main Items

- 1.- Determination of the Q vs. r.p.m. curve for an axial pump.
- 2.- Determination of the H vs. Q curve for different r.p.m. of an axial pump.
- 3.- Determination of the mechanical power vs flow for different r.p.m. of an axial pump.
- 4.- Determination of the η vs flow curve for different r.p.m. of an axial pump.
- 5.- Determination of an axial pump's map.

Additional practical possibilities to be done by the end customer:

- 6.- Sensors calibration.
- 7.- Obtaining the H(n) and N(n) curves.
- 8.- Study of the influence of pressure at the outlet.
- 9.- Calculation of the axial pump efficiency.

Other possibilities to be done with this Unit:

10.- Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

11.- Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gain; proportional, integral, derivate parameters; etc, in real time.

- 12.- The Computer Control System with SCADA allows a real industrial simulation.
- 13.- This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 14.- This unit can be used for doing applied research.
- 15.- This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 16.- Control of the PBAC unit process through the control interface box without the computer.
- 17.- Visualization of all the sensors values used in the PBAC unit process.
- By using PLC-PI additional 19 more exercises can be done.
- Several other exercises can be done and designed by the user.

a) Industrial configuration

OPLC. Industrial Control using PLC (it includes PLC-PI Module plus PLC-SOF Control Software):

-PLC-PI. PLC Module:

Metallic box.

Circuit diagram in the module front panel.

Digital inputs(X) and Digital outputs (Y) block: 16 Digital inputs. 14 Digital outputs.

Analog inputs block: 16 Analog inputs.

Analog outputs block: 4 Analog outputs.

Touch screen. Panasonic PLC:

High-speed scan of 0.32 $\mu sec.$ Program capacity of 32 Ksteps. High-speed counter. Multi-point PID control.

Digital inputs/outputs and analog inputs/outputs Panasonic modules. **PBAC/PLC-SOF. PLC Control Software:**

For this particular unit, always included with PLC supply.

Practices to be done with PLC-PI:

- 1.- Control of the PBAC unit process through the control interface box without the computer.
- 2.- Visualization of all the sensors values used in the PBAC unit process.
- 3.- Calibration of all sensors included in the PBAC unit process.
- 4.- Hand on of all the actuators involved in the PBAC unit process.
- 5.- Realization of different experiments, in automatic way, without having in front the unit. (This experiment can be decided previously).
- 6.- Simulation of outside actions, in the cases hardware elements do not exist. (Example: test of complementary tanks, complementary industrial environment to the process to be studied, etc).
- 7.- PLC hardware general use and manipulation.
- 8.- PLC process application for PBAC unit.
- 9.- PLC structure.
- 10.- PLC inputs and outputs configuration.
- 11.- PLC configuration possibilities.
- 12.- PLC programming languages.
- 13.- PLC different programming standard languages.
- 14.- New configuration and development of new process.
- 15.- Hand on an established process.
- 16.- To visualize and see the results and to make comparisons with the PBAC unit process.
- 17.- Possibility of creating new process in relation with the PBAC unit.
- 18.- PLC Programming exercises.
- 19.- Own PLC applications in accordance with teacher and student requirements.

b) <u>Technical and Vocational Education configuration</u>

⑧ PBAC/CAI. Computer Aided Instruction Software System.

This complete package consists on an Instructor Software (INS/SOF) totally integrated with the Student Software (PBAC/SOF).

-INS/SOF. Classroom Management Software (Instructor Software):

The Instructor can:

Organize Students by Classes and Groups.

Create easily new entries or delete them.

Create data bases with student information.

Analyze results and make statistical comparisons.

Print reports.

Develop own examinations.

Detect student's progress and difficulties.

-PBAC/SOF. Computer Aided Instruction Software (Student Software):

It explains how to use the unit, run the experiments and what to do at any moment.

This Software contains:

- Theory.
- Exercises.

Guided Practices.

Exams.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. The "FAULTS" mode consists on causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.
- Faults affecting the actuators:
 - Actuators channels interchange at any time during the program execution.
 - Response reduction of an actuator.
- Faults in the controls execution:
 - Inversion of the performance in ON/OFF controls.
 - Reduction or increase of the calculated total response.
 - The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

c) <u>Higher Education and/or Technical and Vocational Education configuration</u>

10 PBAC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use.

CAL is a class assistant that helps in making the necessary calculations to extract the right conclusions from data obtained during the experimental practices. CAL will perform the calculations.

CAL computes the value of all the variables involved.

It allows to plot and print the results. Between the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

d) Multipost Expansions options

1) Mini ESN. EDIBON Mini Scada-Net System.

EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The Mini ESN system consists on the adaptation of any EDIBON Computer Controlled Unit with SCADA integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

-It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA, connected in a local net.

-Open Control + Multicontrol + Real Time Control + Multi Student Post.

-Instructor controls and explains to all students at the same time.

-Any user/student can work doing "real time" control/multicontrol and visualisation.

-Instructor can see in the computer what any user/student is doing in the unit.

-Continuous communication between the instructor and all the users/students connected.

Main advantages:

-It allows an easier and quicker understanding.

-This system allows you can safe time and cost.

-Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

-Instructor's computer.

-Students' computers.

-Local Network.

-Unit-Control Interface adaptation.

-Unit Software adaptation.

-Webcam.

-Mini ESN Software to control the whole system.

-Cables and accessories required for a normal operation.

*Specifications subject to change without previous notice, due to the convenience of improvements of the product.

C/ Del Agua, 14. Polígono Industrial San José de Valderas. 28918 LEGANÉS. (Madrid). SPAIN. Phone: 34-91-6199363 FAX: 34-91-6198647 E-mail: edibon@edibon.com WEB site: **www.edibon.com**

Issue: ED01/13 Date: August/2013 **REPRESENTATIVE:**