

Computer Controlled Teaching Unit for the Study of Regulation and Control, with SCADA and PID Control

Key features:

- Advanced Real-Time SCADA and PID Control.
- Open Control + Multicontrol + Real-Time Control.
- Specialized EDIBON Control Software based on Labview.
- National Instruments Data Acquisition board (250 KS/s, kilo samples per second).
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- > Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- Designed and manufactured under several guality standards.
- Optional CAL software helps the user perform calculations and comprehend the results.
- > This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.
- Wide range of applications for working with RYC.

www.edibon.com

→Products range →Units → 2.-Electronics

≠}P,roducts

MULTICONTROL

REAL TIME CONTROL

Worlddidac Quality Charter Certificate and Worlddidge Member

ISO 9000: Quality Management (for Design, Manufacturing, Commercialization and After-sales service)

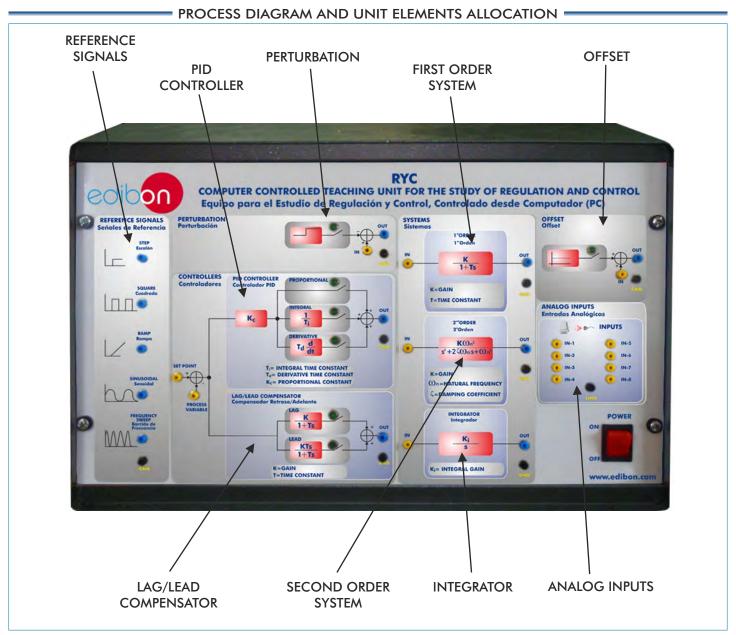
Page 1

ECO-Management and Audit Scheme (environmental management)

INTRODUCTION

Nowadays, the regulation and control engineering has an essential role in a wide range of control systems. A system can be mechanic, electric, chemical, etc. and the mathematical modeling, analysis and controller design uses control theory in time, frequency and complex-s domains, depending on the nature of the design problem.

The "RYC" is the Regulation and Control trainer unit designed by EDIBON. It allows students to learn the most important concepts about Regulation and Control in an easy and comprehensive way.


The unit is provided with a set of practices, through which the user will understand how to characterize first order systems and second order systems, and how the PID controller and the Lead & Lag controller work.


GENERAL DESCRIPTION

Regulation and control theory is divided into two major divisions in, namely, classical and modern. The implementation of classical controller designs as compared to systems designed using modern control theory is easier and these controllers are preferred in most industrial applications. The most common controllers designed using classical control theory, are PID controllers.

The "RYC" unit allows the students to simulate an integrator system, a first order system and a second order system and regulate them with a PID controller or Lead & Lag compensator. The unit also allows to simulate perturbations and offsets to analyze the response of the system.

A wide range of applications (DC Servo Motor Module, Ball and Beam Module, etc.) for working with the "RYC" unit are available to study a real process response to complement the Study of regulation and control in real time.

Optional CAL software helps the user perform calculations and comprehend the results. This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

② DAB. Data Acquisition Board:

The Data Acquisition board is part of the SCADA system.

PCI Express Data acquisition board (National Instruments) to be placed in a computer slot. Bus PCI Express.

Analog input:

Number of **channels = 16** single-ended or 8 differential.

Resolution=16 bits, 1 in 65536.

Sampling rate up to: 250 KS/s (kilo samples per second).

Input range (V) = 10 V.

Data transfers=DMA, interrupts, programmed I/0. DMA channels=6.

Analog output:

Number of **channels=2**.

Resolution=16 bits, 1 in 65536.

Maximum output rate up to: 900 KS/s.

Output range(V) = 10 V.

Data transfers=DMA, interrupts, programmed I/0.

Digital Input/Output:

Number of channels=24 inputs/outputs.

D0 or DI Sample Clock frequency: 0 to 100 MHz.

Timing:

Counter/timers=4.

Resolution: Counter/timers: 32 bits.

③ RYC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system.

Compatible with actual Windows operating systems.

Graphic and intuitive simulation of the process on the computer screen.

Compatible with the industry standards.

The software allows to visualize the signal in time demain and perform the Bode diagram of the analized system.

The software allows to modify all parameters of the reference signal generators, system simulators (integrator, first order system and second order system) and controllers (PID and Lead/Lag Compensator). The Software also allows to modify the offset and the pertubation value.

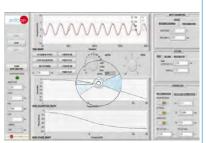
Registration, visualization and control of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Management, processing, comparison and storage of data.

Sampling velocity up to 250 KS/s (kilo samples per second).

Comparative analysis of the obtained data, after the process and modification of the conditions during the experiment.


This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

(a) Cables and Accessories, for normal operation.

⑤ Manuals:

This unit is **supplied with the following manuals:** Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance & Practices Manuals.

* References 1 to 5 are the main items: RYC + DAB + RYC/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

RYC/CCSOF

6 Additional Applications for working with the RYC Unit:

RYC-SM. DC Servo Motor Module:

This module has been designed to study a practical control system, through the control of the position and speed of a DC Servo Motor.

The RYC-SM module consistis of DC servo motor, tachometer and potentiometer. The elements are used in conjunction with the RYC unit to control the motor position and the motor speed.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit.

DC Servo Motor:

Motor supply: 10Vdc.

Tachometer:

Tachometer output: 10Vdc.

Potentiometer:

360 degrees of rotation.

The potentiometer is used to measure the position of the axis of rotation of the motor where it is attached.

Dimensions: 300 x 200 x 200 mm. approx. (11.81 x 7.87 x 7.87 inches approx.).

Weight: 10 Kg. approx. (22 pounds approx.).

RYC-BB. Ball and Beam Module:

This module has been designed to study a practical control system, through the study of a classical control system; the Ball and Beam system.

The RYC-BB module consists of DC servo motor, potentiometer, resistive wires and metallic ball. The sensors are used in conjunction with the RYC unit to control the position of the ball over the resistive wires.

Specifications:

Painted steel box.

Steel ball.

DC Servo Motor:

For modification the angle of the beam.

Sensors:

Potentiometer for detection the angle of beam.

Resistive wires (the ball rolls on them) and sensor to detect the different electrical resistances depending on the position of the ball.

Dimensions: 600 x 350 x 430 mm. approx. (23.62 x 13.78 x 16.93 inches approx.).

Weight: 15 Kg. approx. (33 pounds approx.).

W RYC-TAR. **Air Flow Temperature Control Module:**

This module has been designed to study a practical control system, through the control of the air flow temperature.

The RYC-TAR module main components are a cylindrical duct with a heater element and fan at the beginning of the duct and three selectable temperature measuring devices along the cylinder.

The signal from each temperature measuring device is used by the RYC unit to control the air flux through the control of the power of the fan.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit. Fan:

Motor speed: 1200 rpm max.

Dimensions: 120mm x 12mm.

Three selectable thermocouples, distributed along the duct.

Dimensions: 400 x 300 x 300 mm. approx. (15.74 x 11.81 x 11.81 inches approx.).

Weight: 7 Kg. approx. (15.4 pounds approx.).

RYC-SM

RYC-BB

Continue...

RYC-TAG. Water Flow Temperature Control Module:

This module has been designed to study a practical control system, through the control of water flow temperature.

The RYC-TAG module consists of by two different water circuits: one of them is used for the hot water and the other one is used for the cold water. Both circuits are connected by a heat exchanger.

The temperature sensor is used in conjunction with the RYC unit to control the temperature of the water exit flux of the cold water circuit, through the regulation of the hot water flow.

Specifications:

Diagram in the front panel with similar distribution to the elements in the real unit.

The unit is conformed of two separated circuits:

Hot water circuit, it is a closed circuit and the main elements are the pump, the water tank with a heater resistance and the electronic proportional control valve for control of the hot water recirculation flux.

Cold water circuit, it is an open circuit and the main element is the temperature measurement device (temperature sensor).

Both circuits exchange heat through a heat exchanger.

Dimensions: 500 x 450 x 600 mm. approx. (19.68 x 17.71 x 23.62 inches approx.).

Weight: 18 Kg. approx. (39.68 pounds approx.).

RYC-T. Temperature Control Module:

This module has been designed to study a practical control system, through the control of the temperature in a water tank.

The RYC-T module consists of a heating element, water pump and two transparent tanks (the upper tank is used as temperature controlled tank and the lower tank is used as reservoir tank). The thermocouple is used with the RYC unit to control the temperature of the water through the control of the cold water flow that goes to the controlled tank.

The RYC-T includes an analog flow meter to visualize the change of water flow of the system.

The system allows to insert disturbances manually, through the variation of power of the heating element.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit.

Temperature controlled tank: 1.9 l. approx.

Cold water input tank: 3 l. approx.

Reservoir tank: 15 l. approx.

Level sensor: level float switch sensor with an ON/OFF output.

Water pump: max water flow 8 l./min.

Analog flow meter:

Calibrated in liters per minute.

Range of measurements: 0-2 l./min.

Used to calibrate the water pump.

Thermocouple type J.

Heating element.

Interface box:

Temperature display with overheating protection.

Thermocouple signal conditioning circuit.

Water pump driver controlled from the computer.

Potentiometer to adjust the heating element and insert disturbances in the system.

Module dimensions and weight:

Dimensions: 600 x 300 x 400 mm. approx. (23.62x 11.81 x 15.74 inches approx.).

Weight: 12kg. approx. (26.4 pounds approx.).

Interface dimensions and weight:

Dimensions: 490 x 330 x 310 mm. approx.(19.29 x 12.99 x 12.20 inches approx.). Weight: 10 Kg. approx. (22 pounds approx.).

Module +

Interface RYC-T

Continue...

WRYC-P. **Pressure Control Module:**

This module has been designed to study a practical control system, through the control of the pressure level of a pressured tank.

The RYC-P module consists of a pressure tank, air pump and pressure sensor. The pressure sensor is used in conjunction with the RYC unit to control and monitoring the pressure level of the pressure chamber.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit.

Air pump.

Analog manometer.

Pressure sensor.

Pressure tank with security valve.

Electronic valve regulated with a button on the front panel.

Dimensions: 400 x 350 x 300 mm. approx. (15.74 x 13.78 x 11.81 inches approx.).

Weight: 12 Kg. approx. (26.4 pounds approx.).

RYC-N. Level Control Module:

This module has been designed to study a practical control system, through the control of the water level of a tank.

The RYC-N module consists of a pressure sensor, water pump and two transparent tanks (the upper tank is used as level controlled tank and the lower tank is used as reservoir tank). The pressure sensor is used in conjunction with the RYC unit to control the water level of the tank through the control of the water flow that goes to the controlled tank.

The RYC-T includes an analog flow meter to visualize the change of water flow of the system.

The system allows to insert disturbances manually variating the output flow of the controlled tank.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit. Water pump: max water flow 8 l./min.

Analog flow meter:

Calibrated in liters per minute. Range of measurements: 0-2 l./min.

Level controlled tank: 6 l. approx. Reservoir tank: 15 l. approx.

Differential pressure sensor:

Measurement range: 0 to 10 psi. Sensitivity: 3.33 mV/psi. Power-supply range: 10 to 16 Vdc.

Used to measure the level of the tank.

Interface box:

Water pump driver controlled from the computer.

Differential pressure sensor signal conditioning circuit.

Module dimensions and weight:

Dimensions: 405 x 300 x 400 mm. approx. (15.94x 11.81 x 15.74 inches approx.). Weight: 10kg. approx. (22 pounds approx.)

Interface dimensions and weight:

Dimensions: 300 x 200 x 200 mm. approx.(11.81 x 7.87 x 7.87 inches approx.). Weight: 3 Kg. approx. (6.61 pounds approx.).

RYC-C. Flow Rate Control Module:

This module has been designed to study a practical control system, through the control of the flow rate module in a closed circuit.

The RYC-C module is consists of a closed circuit with a transparent tank, a flow sensor, a rotameter, a water pump and an electronic proportional control valve. The flow sensor is used in conjunction with the RYC unit to control the flow rate in the circuit through the electronic proportional control valve.

Specifications:

Diagram in the front panel with similar distribution to the elements in the real unit. Transparent tank.

Flow sensor.

Rotameter.

Water pump.

Electronic proportional control valve.

Dimensions: 400 x 300 x 550 mm. approx. (15.74 x 11.81 x 21.65 inches approx.). Weight: 13 Kg. approx. (28.6 pounds approx.).

Module

Interface RYC-N

www.edibon.com

ORYC-L Luminosity Control Module:

This module has been designed to study a practical control system and study the different light sensors, through the luminosity control with three different light sensors. The RYC-I module consists of an adjustable lamp and three selectables sensors: a

photoresistor (LDR), a phototransistor and a photodiode.

The signal from each light sensor is used by the RYC unit to control the power of the lamp.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit.

Adjustable lamp.

Photodiode:

This sensor converts light into either current or voltage, depending upon the mode of operation.

Phototransistor:

It also consists of a photodiode with internal gain.

Light Dependent Resistor:

A LDR is a resistor whose resistance decreases with increasing incident light intensity.

Dimensions: 400 x 300 x 300 mm. approx. (15.74 x 11.81 x 11.81 inches approx.).

Weight: 7 Kg. approx. (15.4 pounds approx.).

RYC-pH. pH Control Module:

This module has been designed to study a practical control system through the pH dissolution control in a stirred tank.

The RYC-pH module allows the students learn the continuous control of a pH value. The module consists of two circuits, one of them for the acid solution supply and the other one for the basic solution supply. Both circuits send their solution to a tank with a pH meter.

The circuit for the acid solution has a pump to keep the circuit flow constant. The circuit for the basic solution has a pump and an electronic proportional control valve controlled by the RYC unit for reach a controlled system.

Specifications:

Diagram in the front panel with similar distribution to the elements in the real unit.

Pump to send acid solution to the tank.

Pump to send basic solution to the tank.

Stirred metallic tank:

Capacity: 2 I.

pH meter.

Stirring element.

Electronic proportional control valve.

Dimensions: 600 x 400 x 550 mm. approx. (23.62 x 15.74 x 21.65 inches approx.).

Weight: 24 Kg. approx. (52.8 pounds approx.).

RYC-CP. Position Control Module:

This module has been designed to study a practical control system, through the control of a linear position system.

The RYC-CP module consist of a cart moved by a controlled DC servo motor through a toothed belt, the position sensor is a shaft encoder.

The RYC-CP allows the students to set the cart position, the shaft encoder output signal is connect to the RYC to control the cart position through the control of the DC servo motor.

Specifications:

Diagram in the front panel with similar distribution to the elements in the real unit.

Movable cart.

DC servo motor.

2 limit switches to the beginning and ending of the linear movement.

Shaft encoder for cart position measuring.

Linear structure with a toothed belt, communicating the shaft encoder with the DC servo motor.

Dimensions: 700 x 350 x 300 mm. approx. (27.55 x 13.78 x 11.81 inches approx.).

Weight: 22 Kg. approx. (48.4 pounds approx.).

RYC-PL Inverted Pendulum Control Module:

This module has been designed to study a practical control system. The RYC-PI allows the student to learn the principles of a classical control problem; the inverted pendulum in 2D. The parameters of the model are the deviation angle of the pendulum from the vertical position (as input) and the horizontal force applied to the cart (as output).

The RYC-PI module consist of a movable cart over elevated rails by a controlled DC servo motor through a toothed belt, the cart is attached with a pendulum. For measure the angle of the pendulum the cart has an angle encoder potentiometer in axis of rotation of the pendulum.

To measure the position of the cart the module has a shaft encodes in the axis of rotation of the DC motor.

The cart is connected with a pendulum with a small load, this load destabilizes the cart when the cart makes a move.

This module allows setting the position of the cart, and in conjunction with the RYC unit, the module automatically controls the pendulum position, holding it in a vertical position through the correct control of the movement of the cart.

Specifications:

Linear structure with rails on the top.

Movable cart.

Pendulum attached with the movable cart.

DC servo motor.

Toothed belt, communicating the cart with the DC servo motor.

Angle encoder for measure the cart position.

Shaft encoder for measure the angle of the pendulum.

2 limit switches to the beginning and ending of the linear movement.

Dimensions: 1700 x 350 x 550 mm. approx. (66.92 x 13.78 x 21.65 inches approx.).

Weight: 19 Kg. approx. (41.8 pounds approx.).

RYC-CLM. **Magnetic Levitation Control Module:**

This module has been designed to study a practical control system.

The RYC-CLM allows the student to learn the principles of the position control of a levitating metallic ball.

The RYC-CLM module consist of electromagnet and position sensor made of a photo emitter and photo detector. The position sensor that detect the position of the metallic ball, work in conjunction with the RYC unit to control the vertical position of the metallic ball through the control of the feeder current for the electromagnet.

Specifications:

Painted steel box.

Diagram in the front panel with similar distribution to the elements in the real unit.

Electromagnet.

Current sensor for the feed current for the electromagnet

Coil feed driver circuit, which convert differential of potential (from the RYC unit) in current (for feed the electromagnet).

Steel ball

Position sensor conformed of:

Photo emitter.

Photo detector.

Dimensions: 400 x 400 x 400 mm. approx. (15.74 x 15.74 x 15.74 inches approx.).

Weight: 12 Kg. approx. (26.4 pounds approx.).

EXERCISES AND PRACTICAL POSSIBILITIES

Practical possibilities to be done with the Regulation and Control Unit (RYC):

- 1.- Response of a first order system in time domain. (Step-response).
- 2.- Response of a first order system in time domain. (Rampresponse).
- 3.- Response of a first order system in time domain. (Sine-response).
- 4.- Response of a first order system in frequency domain (Sine-response).
- 5.- Response of a second order system in time domain (Stepresponse).
- 6.- Response of a second order system in time domain. (Rampresponse).
- 7.- Response of a second order system in time domain. (Sine-response).
- 8.- Response of a second order system in frequency domain (Sine-response).
- 9.- Phase Lead Compensator experiment.
- 10.- Phase Lag Compensator experiment.
- 11.- Structure of a PID controller (Proportional-Integrative-Derivative blocks).
- 12.- PID control of a first order system in open-loop.
- 13.- PID control of a second order system in open-loop.
- 14.- PID control of a first order system in closed-loop. (Mathematical tuning).
- 15.- PID control of a first order system in closed-loop. (Experimental tuning).
- 16.- PID control of a first order system in closed-loop. (Ziegler-Nichols tuning).
- 17.- PID control of a second order system in closed-loop. (Mathematical tuning).
- 18.- PID control of a second order system in closed-loop. (Experimental tuning).
- 19.- PID control of a second order system in closed- loop. (Ziegler Nichols tuning).

Practical possibilities to be done with the Additional Applications, for working with RYC Unit:

- DC Servo Motor Module (RYC-SM):
- 20.-Familiarization with the main module components.
- 21.-Study a potentiometer used for the position measuring.
- 22.-Study a Tachometer used for the speed measuring.
- 23.-Analyze of the DC motor transient Response.
- 24.- Analyze the time constant of the DC motor in open loop.
- 25.-Analyze the time constant of the DC motor in closed loop.
- 26.-Study of the stability of the system to gain changes.
- 27.-Position control of DC motor with a PID controller and the potentiometer.
- 28.-Analysis of the different responses of the system to modifications of PID parameters for the position control.
- 29.-Speed control of DC motor with P, PI, PD and PID controllers.
- 30.-Analysis of the different responses of the system to modifications of PID parameters for the speed control.

- Ball and Beam Module (RYC-BB):
- 31.- Familiarization with the main module components.
- 32.- Estimate the ball velocity and the ball position.
- 33.-Analyze the transient Response of the system.
- 34.- Analyze the time constant of the system in closed loop.
- 35.- Study of the Ball position control with a PID controller.
- 36.-Analysis of the different responses of the system to modifications of PID parameters.
- Air Flow Temperature Control Module (RYC-TAR):
- 37.-Familiarization with the main module components.
- 38. -Analyze the transient response of the system.
- 39.-Analyze the system response in open loop.
- 40.-Analyze the system response in closed loop.
- 41.-Air temperature control with P, PI, PD and PID controllers.
- 42.-Setting and optimizing the parameters of the PID control.
- 43.-Analysis of the different responses of the system to modifications of PID parameters.
- 44.-Study of the disturbances in a controlled system with a PID controller.
- Water Flow Temperature Control Module (RYC-TAG):
- 45.-Familiarization with the main module components.
- 46.-Analyze the transient response of the system.
- 47.-Analyze the system response in open loop.
- 48.-Analyze the system response in closed loop.
- 49.-Water flow temperature control with a P, PI, PD and PID controller.
- 50.-Setting and optimizing the parameters of the PID control.
- 51.-Analysis of the different responses of the system to modifications of PID parameters.
- 52.-Study of the disturbances in a controlled system with a PID controller.
- Temperature Control Module (RYC-T):
- 53. -Familiarization with the main module components.
- 54. -Analyze the transient response of the system.
- 55.- Analyze the system response in open loop.
- 56.- Analyze the system response in closed loop.
- 57.- Air temperature control with a P, PI, PD and PID controller.
- 58.- Setting and optimizing the parameters of the PID control.
- 59.- Analysis of the different responses of the system to modifications of PID parameters.
- Pressure Control Module (RYC-P):
- 60.- Familiarization with the main module components.
- 61.- Analyze the transient response of the system.
- 62.- Analyze the system response in open loop.
- 63.- Analyze the system response in closed loop.
- 64.- Pressure control with a P, PI, PD and PID controller.
- 65.- Setting and optimizing the parameters of the PID control.
- 66.- Analysis of the different responses of the system to modifications of PID parameters.
- 67.- Study of the disturbances in a controlled system with a PID controller.

Some Practical Possibilities

- Level Control Module (RYC-N):
- 68.- Familiarization with the main module components.
- 69.- Analyze the transient response of the system.
- 70.- Analyze the system response in open loop.
- 71.- Analyze the system response in closed loop.
- 72.- Level control with a P, PI, PD and PID controller.
- 73.- Setting and optimizing the parameters of the PID control.
- 74.- Analysis of the different responses of the system to modifications of PID parameters.
- 75.- Study of the disturbances in a controlled system with a PID controller.
- Flow Rate Control Module (RYC-C):
- 76.- Familiarization with the main module components.
- 77.- Analyze the transient response of the system.
- 78.- Analyze the system response in open loop.
- 79.- Analyze the system response in closed loop.
- 80.- Flow rate control with a P, PI, PD and PID controller.
- 81.- Setting and optimizing the parameters of the PID control.
- 82.- Analysis of the different responses of the system to modifications of PID parameters.
- 83.- Study of the disturbances in a controlled system with a PID controller.
- Luminosity Control Module (RYC-I):
- 84.- Familiarization with the main module components.
- 85.- Study the photoresistor characteristics.
- 86.- Study the phototransistor characteristics.
- 87.- Study the photodiode characteristics.
- 88.- Analyze the transient response of the system.
- 89.- Analyze the system response in open loop.
- 90.- Analyze the system response in closed loop.
- 91.- Luminosity control with a P, PI, PD and PID controller.
- 92.- Setting and optimizing the parameters of the PID control.
- 93.- Analysis of the different responses of the system to modifications of PID parameters.
- 94.- Study of the disturbances in a controlled system with a PID controller.
- pH Control Module (RYC-pH):
- 95.- Familiarization with the main module components.
- 96.- Analyze the transient response of the system.
- 97.- Analyze the system response in open loop.
- 98.- Analyze the system response in closed loop.
- 99.- pH level control with a P, PI, PD and PID controller.
- 100.- Setting and optimizing the parameters of the PID control.
- 101.-Analysis of the different responses of the system to modifications of PID parameters.
- 102.- Study of the disturbances in a controlled system with a PID controller.

- -Position Control Module (RYC-CP):
- 103.- Familiarization with the main module components.
- 104.- Analyze the transient response of the system.
- 105.- Analyze the system response in open loop.
- 106.- Analyze the system response in closed loop.
- 107. Position control with a P, PI, PD and PID controller.
- 108.- Setting and optimizing the parameters of the PID control.
- 109.-Analysis of the different responses of the system to modifications of PID parameters.

- Inverted Pendulum Control Module (RYC-PI):

- 110.- Familiarization with the main module components.
- 111.-Control of the cart position.
- 112.- Analyze the transient response of the system.
- 113.-System stabilization.
- 114.- Study the position control with PID controller.
- 115.-Setting and optimizing the parameters of the PID control.
- 116.-Analysis of the different responses of the system to modifications of PID parameters.
- 117.-Study the swing of the pendulum with the correct PID parameters.
- Magnetic Levitation Control Module (RYC-CLM):
- 118.-Familiarization with the main module components.
- 119.-Study the linear model system.
- 120.-Study the Non-linear model system.
- 121.-Control of the ball position.
- 122.-Analyze the transient response of the system.
- 123.-Study the control of the ball position through a PD and PID controller.
- 124.-Setting and optimizing the parameters of the PID control.
- 125.-Analysis of the different responses of the system to modifications of PID parameters.

Other possibilities to be done with this RYC Unit:

126.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

127.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivate parameters; etc, in real time.

- 128.-This unit is totally safe as uses mechanical, electrical and electronic, and software safety devices.
- 129.-This unit can be used for doing applied research.
- 130.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 131.-Control of the RYC unit process through the control interface box without the computer.
- 132.-Visualization of all the sensors values used in the RYC unit process.
- Several other exercises can be done and designed by the user.

REQUIRED SERVICES =

-Electrical supply: single-phase, 220 V/50 Hz. or 110 V/60 Hz. -Computer (PC).

DIMENSIONS & WEIGHTS

RYC. Unit:

-Dimensions: 490 x 330 x 310 mm. approx. (19.29 x 12.99 x 12.20 inches approx.). -Weight: 10 Kg. approx. (22 pounds approx.).

ADDITIONAL APPLICATIONS

- RYC-C. Flow Rate Control Module.
- RYC-I. Luminosity Control Module.
- RYC-pH. pH Control Module.
- RYC-CP. Position Control Module.
- RYC-PI. Inverted Pendulum Control Module.
- RYC-CLM. Magnetic Levitation Control Module.

- RYC-N. Level Control Module.

- RYC-T.

- RYC-P.

- RYC-SM. DC Servo Motor Module.

- RYC-BB. Ball and Beam Module.

- RYC-TAR. Air Flow Temperature Control Module.

Pressure Control Module.

- RYC-TAG . Water Flow Temperature Control Module.

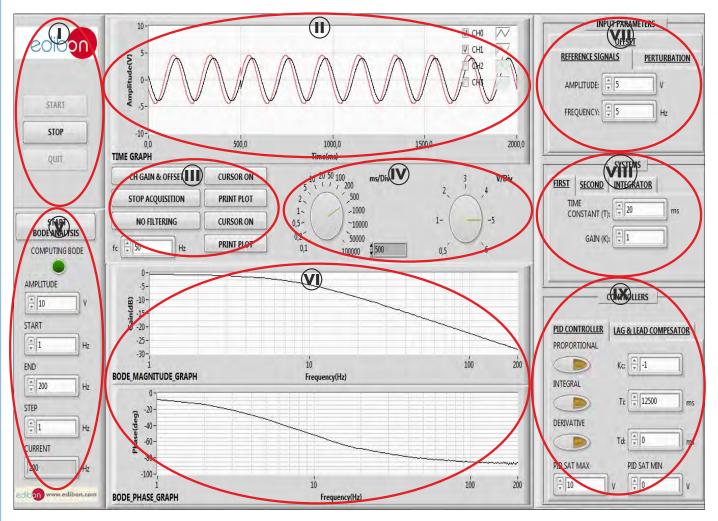
Temperature Control Module.

AVAILABLE VERSIONS

Offered in this catalogue:

- RYC. Computer Controlled Teaching Unit for the Study of Regulation and Control.

Offered in other catalogue:


- RYC/B. Basic Teaching Unit for the Study of Regulation and Control.

SOFTWARE MAIN SCREENS =

SCADA and PID Control

Typical Software screen

The screen below shows the response of a first order system (with 20 ms of time constant) to an oscillating input signal.

(1) Main software operation buttons.

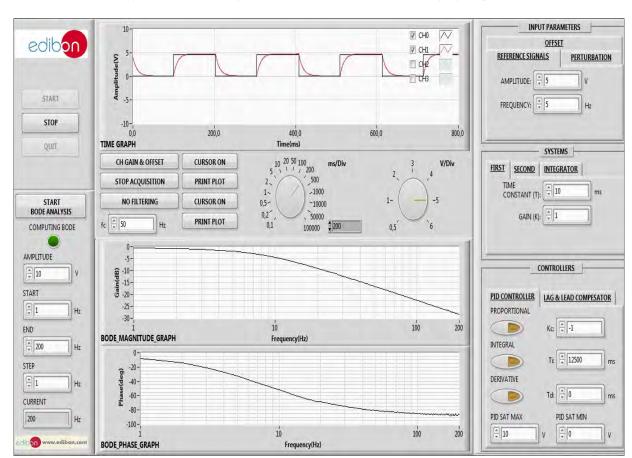
 (\mathbf{u}) Time domain graph of the selected signals, with the scale parameters for the complete configuration of the graph.

(ii) Graphs control panel: allows to stop the signal acquisition, activate the cursors of the time domain graph and the Bode graph and adjust the offset and the gain of every channel separately. The graph control panel includes the buttons to print the current time domain graph and the Bode graph to save the data for further analysis. The Graphs control panel allows to activate a configurable low pass filter to facilitate the signal analysis.

The time domain graph includes two knobs to adjust the time per division and the voltage per division.

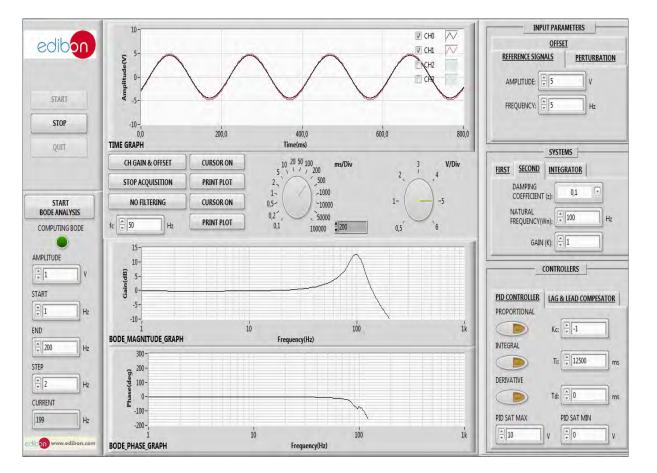
(v) The Bode graph includes scale parameters (amplitude, start frequency, end frequency and the frequency steps) for the complete configuration of the graph.

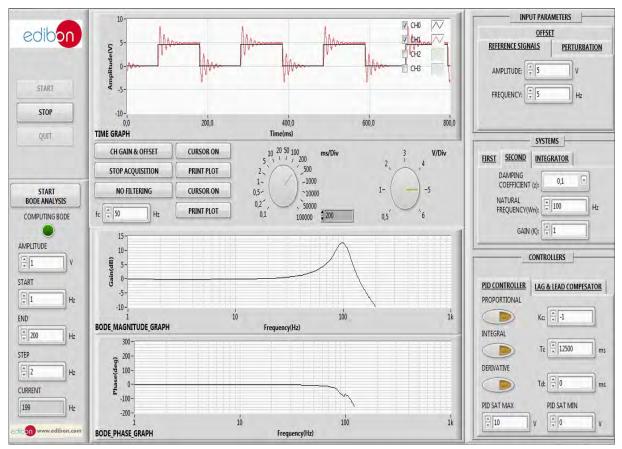
(y) Bode graph (system results in frequency domain), the software allows to perform a complete Bode graph in amplitude and phase.


nput parameters, this block allows to set the reference signals block, the offset block and the perturbation block values.

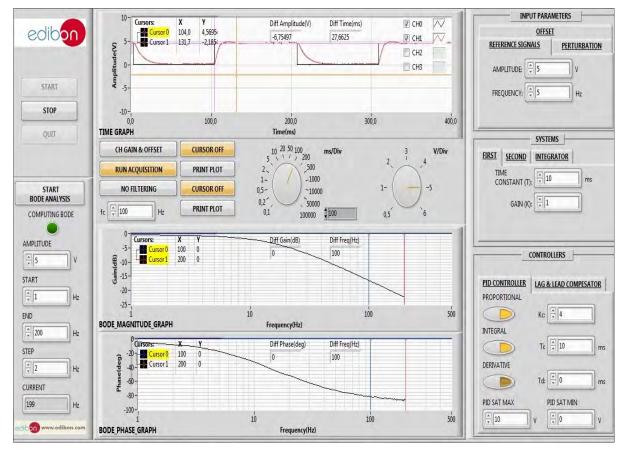
(m) System parameters, this block allows to set the integrator, the first order system and the second order system values.

(X) Controller parameters, this block allows to set the PID and Lag and lead compensator controllers values.


- For improve the understandable of the trainer, when the students turn on an option in the software, the corresponding LED in the hardware, switches on automatically.


The screen below shows the response of a first order system (with 10ms of time constant) to a step input signal.

The screen below shows the response of a second order system (with 0.1 of damping coefficient and 100Hz of natural frequency) to an oscillating input signal.



Some **real** results obtained from this Unit

The screen below shows the response of a second order system (with 0.1 of damping coefficient and 100Hz of natural frequency) to a step input signal.

The screen below shows the response of a first order system (with 10ms of time constant) with PI controller (with 4 of proportional parameter and 10ms of integrative parameter) to a step input signal. In this screen the cursors are activated in the time domain graph.

COMPLETE TECHNICAL SPECIFICATIONS (for optional items)

Additionally to the main items described, we can offer, as optional, other items from 7 to 10.

All these items try to give more possibilities for:

a) Technical and Vocational Education configuration. (CAI)

b) Higher Education and/or Technical and Vocational Education configuration. (CAL)

c) Multipost Expansions options. (Mini ESN and ESN)

a) Technical and Vocational Education configuration

⑦ RYC/CAI. Computer Aided Instruction Software System.

This complete software package includes two Softwares: the INS/SOF. Classroom Management Software (Instructor Software) and the RYC/SOF. Computer Aided Instruction Software (Student Software).

This software is optional and can be used additionally to items (1 to 5).

This complete software package consists of an Instructor Software (INS/ SOF) totally integrated with the Student Software (RYC/SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- INS/SOF. Classroom Management Software (Instructor Software): The Instructor can:

Instructor Software

Organize Students by Classes and Groups.

Create easily new entries or delete them.

Create data bases with student information.

Analyze results and make statistical comparisons.

Generate and print reports.

Detect student's progress and difficulties.

...and many other facilities.

Student Software

- RYC/SOF. Computer Aided Instruction Software (Student Software):
 It explains how to use the unit, run the experiments and what to do at any moment.

This Software contains:

Theory.

Exercises.

Guided Practices.

Exams.

For more information see CAI catalogue. Click on the following link: www.edibon.com/products/catalogues/en/CAI.pdf

b) <u>Higher Education and/or Technical and Vocational Education configuration</u>

⑧ RYC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

This Computer Aided Learning Software (CAL) is a Windows based software, simple and very easy to use, specifically developed by EDIBON. It is very useful for Higher Education level.

CAL is a class assistant that helps in doing the necessary calculations to extract the right conclusions from data obtained during the experimental practices.

CAL computes the value of all the variables involved and performs the calculations.

It allows to plot and print the results. Within the plotting options, any variable can be represented against any other.

Different plotting displays.

It has a wide range of information, such as constant values, unit conversion factors and integral and derivative tables.

For more information see **CAL** catalogue. Click on the following link: <u>www.edibon.com/products/catalogues/en/CAL.pdf</u>

Information of constant values, unit conversion factors and integral and derivative tables

c) Multipost Expansions options

Mini ESN. EDIBON Mini Scada-Net System.

Mini ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

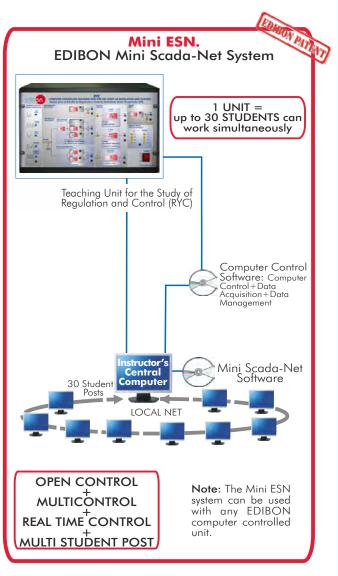
The Mini ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/ students connected.

Main advantages:


- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see Mini ESN catalogue. Click on the following link: www.edibon.com/products/catalogues/en/Mini-ESN.pdf

10 ESN. EDIBON Scada-Net System.

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students. For more information see **ESN** catalogue. Click on the following link:

www.edibon.com/products/catalogues/en/units/electronics/esn-electronicscommunications/ESN-ELECTRONICS COMMUNICATIONS-ADVANCED.pdf

Main items (always included in the supply)

Minimum supply always includes:

- Unit: RYC. Teaching Unit for the Study of Regulation and Control.
- 2 DAB. Data Acquisition Board.
- ③ RYC/CCSOF. PID Computer Control + Data Acquisition + Data Management Software.
- (a) Cables and Accessories, for normal operation.
- ⑤ Manuals.
- * <u>IMPORTANT</u>: Under <u>RYC</u> we always supply all the elements for immediate running as 1, 2, 3, 4 and 5.

6 Additional **Applications** for working with RYC Unit: (to choose)

- RYC-SM. DC Servo Motor Module.
- € RYC-BB. Ball and Beam Module.
- RYC-TAR. Air Flow Temperature Control Module.
- € RYC-TAG . Water Flow Temperature Control Module.
- G RYC-T. Temperature Control Module.
- RYC-P. Pressure Control Module.
- GRYC-N. Level Control Module.
- G RYC-C. Flow Rate Control Module.
- RYC-I. Luminosity Control Module.
- RYC-pH. pH Control Module.
- (I) RYC-CP. Position Control Module.
- RYC-PI. Inverted Pendulum Control Module.
- RYC-CLM. Magnetic Levitation Control Module.

Optional items (supplied under specific order)

a) Technical and Vocational configuration

ORYC/CAI. Computer Aided Instruction Software System.

b) Higher Education and/or Technical and Vocational Education configuration

(BRYC/CAL. Computer Aided Learning Software (Results Calculation and Analysis).

c) <u>Multipost Expansions options</u>

Mini ESN. EDIBON Mini Scada-Net System.EDIBON Scada-Net System.

*Specifications subject to change without previous notice, due to the convenience of improvements of the product.

C/ Del Agua, 14. Polígono Industrial San José de Valderas. 28918 LEGANÉS. (Madrid). SPAIN. Phone: 34-91-6199363 FAX: 34-91-6198647 E-mail: edibon@edibon.com WEB site: **www.edibon.com**

Issue: ED01/16 Date: April/2016 **REPRESENTATIVE:**