Computer and Touch Screen Controlled AC Climate Chamber and Water Cooler

O Unit: TAC/CTS. Computer and Touch Screen Controlled AC Climate Chamber and Water Cooler

* Minimum supply always includes: 1 + 2 + 3 + 4 + 5 (Computer not included in the supply)

Key features:

- > Advanced Real-Time SCADA and PID Control.
- > Open Control + Multicontrol + Real-Time Control.
- > Specialized EDIBON Control Software based on LabVIEW.
- > CTS. Computer and touch screen control.
- Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements.
- Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.
- Capable of doing applied research, real industrial simulation, training courses, etc.
- Remote operation and control by the user and remote control for EDIBON technical support, are always included.
- Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software).
- > Designed and manufactured under several quality standards.
- Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached.
- This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

For more information about Key Features, click here

ISO 9001: Quality Management (for Design, Manufacturing, Commercialization and After-sales service)

(total safety

The concept of comfort describes a delicate balance of pleasant feelings in the body produced by its environment, and it can be stated that comfort is noticed when we are not aware of any nuisance. The comfort of a space is perceived through the environment stimuli of the environment.

Human comfort is a very important point in buildings and rooms air conditioning.

The parameters that define comfort are, on one hand, the environmental parameters: temperature, relative humidity, air flow, etc.; and on the other hand, the parameters related to persons: clothes they wear, activity they perform, their thermal sensation, etc.

The objective of the Computer and Touch Screen Controlled AC Climate Chamber and Water Cooler, "TAC/CTS", designed by EDIBON is to introduce the student into the complex world of air conditioning systems, as well as to study and determine the optimal parameters to obtain comfortable environments, the air humidity limit, psychrometric charts, heat transfer, etc.

The performance of a series of practical exercises allows the study of the effect of the different stages of an air conditioning system and the air conditioning process as well as the influence of air humidity and temperature (room conditions) on human comfort (personal feeling).

GENERAL DESCRIPTION

The Computer and Touch Screen Controlled AC Climate Chamber and Water Cooler, "TAC/CTS", is an actual air conditioning system with climatic chamber suitable for people and allows the study of the influence of different operation modes of the system on human comfort.

It mainly consists of a square section tunnel made of stainless steel with several windows that allow the visualization of the process.

There is a computer controlled variable speed fan in one end to introduce air in the duct.

After being impelled, the air passes through a heat exchanger (air-water) to cool the air, thus increasing its relative humidity till reaching the dew point and partially removing the content of water in the air. There is a computer controlled water chiller, a water tank and a recycling pump at the bottom of the unit. The pump will impel the generated cold water through the heat exchanger and it will gain the heat given by the air. There are temperature and flow sensors that enable the user to make energy balances and quantify the cooling capacity in the heat exchanger and the water chiller.

TAC/CTS detail

Then, the air passes through a computer controlled electric heating element to adjust the air temperature and decrease the relative humidity to the desired values.

Finally, the air crosses a computer controlled humidifier that increases the humidity content in the air.

Air leaving the duct enters a climatic chamber suitable for persons, where the comfort feeling in function of the set parameters can be checked.

After leaving the chamber, air can be recycled to the air conditioning duct by an adjustable duct, which enables to work with outside air or with recycled air. Both flows are indicated by two air flow sensors.

To control and observe the temperature and humidity variables, the unit has six strategically located measuring points (five along the tunnel and one in the climatic chamber) consisting of a hygrometer and a humidity sensor to check the measurements obtained. The hygrometers consist of two temperature sensors (wet and dry bulb).

The software of the unit allows a manual operation of the system, controlling each stage and setting stable conditions for research, or an automatic operation, setting comfort conditions in the climatic chamber.

The unit includes a compact interface based on an industrial Programmable Logic Controller (PLC), which allows simultaneous operation from from integrated HMI touch screen or remote PC. Through a portable touch screen with a Human Machine Interface (HMI) it is possible to provide local or remote control through Ehternet cable. Modbus is the communication protocol for remote control, allowing on/off switching, resetting and setting of operating instructions for the unit's components. A MODBUS to KNX gateway kit is also available for programming a BMS (Building Management System) with ETS (Engineering Tool Software).

All the instrumentation included in the unit is monitored by the control system in local and remote mode.

This Computer Controlled Unit is supplied with the EDIBON Computer Control System (SCADA), and includes: The unit itself + a Control Interface Box + CTS + Computer Control, Data Acquisition and Data Management Software Packages, for controlling the process and all parameters involved in the process. PROCESS DIAGRAM AND UNIT ELEMENTS ALLOCATION

Complete Technical Specifications (for main items)

The complete unit includes as well:

Advanced Real-Time SCADA and PID Control.

Open Control + Multicontrol + Real-Time Control.

Specialized EDIBON Control Software based on LabVIEW.

CTS. Computer and touch screen control.

Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements. Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time.

Capable of doing applied research, real industrial simulation, training courses, etc.

Remote operation and control by the user and remote control for EDIBON technical support, are always included.

Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software). Designed and manufactured under several quality standards.

Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached. This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Additional recommended elements (Not included):

- PKNXM. KNX to MODBUS Conversion Gateway.

② TAC/CTS/CIB. Control Interface Box:

The Control Interface Box is part of the SCADA system.

Control interface box with process diagram in the front panel and with the same distribution that the different elements located in the unit, for an easy understanding by the student. All sensors, with their respective signals, are properly manipulated from -10V. to +10V. computer

output.

Sensors connectors in the interface have different pines numbers (from 2 to 16), to avoid connection errors.

Single cable between the control interface box and computer.

The unit control elements are permanently computer controlled, without necessity of changes or connections during the whole process test procedure. Simultaneous visualization in the computer of all parameters involved in the process. Calibration of all sensors involved in the process.

Real time curves representation about system responses.

Storage of all the process data and results in a file.

Graphic representation, in real time, of all the process/system responses.

All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process. All the actuators and sensors values and their responses are displayed on only one screen in the

computer

Shield and filtered signals to avoid external interferences.

Real time PID control with flexibility of modifications from the computer keyboard of the PID parameters, at any moment during the process.

Real time PID and on/off control for pumps, compressors, heating elements, control valves, etc. Real time PID control for parameters involved in the process simultaneously.

Proportional control, integral control and derivative control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).

Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.

Possibility of automatization of the actuators involved in the process.

Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

③TAC/CTS/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:

The three softwares are part of the SCADA system. Compatible with actual Windows operating systems. Graphic and intuitive simulation of the process in screen. Compatible with the industry standards. Registration and visualization of all process variables in an automatic and simultaneous way.

Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.

Analog and digital PID control.

PID menu and set point selection required in the whole work range.

Management, processing, comparison and storage of data. Sampling velocity up to <u>250 KS/s (kilo samples per second)</u>

Calibration system for the sensors involved in the process.

It allows the registration of the alarms state and the graphic representation in real time. Comparative analysis of the obtained data, after the process and modification of the conditions

Comparative analysis of the obtained data, after the process and modification of the conditions during the process. **Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords** to facilitate the teacher's control on the student, and allowing the access to different work levels.

This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.

(4) Cables and Accessories, for normal operation.

(5) Manuals:

This unit is **supplied with 8 manuals**: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

*References 1 to 5 are the main items: TAC/CTS + TAC/CTS/CIB + TAC/CTS/CCSOF + Cables and Accessories + Manuals are included in the minimum supply for enabling normal and full operation.

TAC/CTS/CCSOF

EXERCISES AND PRACTICAL POSSIBILITIES TO BE DONE WITH THE MAIN ITEMS

- 1.- Understanding and operation of the main components and stages of an air conditioning system: cooling, heating, humidification and drying.
- 2.- Understanding and use of the psychrometric chart of the air from measurements with dry bulb and wet bulb.
- 3.- Study and understanding of the influence of the cooling/drying stage in the air conditioning process.
- 4.- Study and understanding of the influence of the heating stage in the air conditioning process.
- 5.- Study and understanding of the influence of the humidifying/ dehumidifying stage in the air conditioning process.
- 6.- Operation of the system elements and representation of the air conditioning complete cycle on a psychrometric chart.

Additional practical possibilities:

- 7.- Sensors calibration.
- 8.- Energy balance in the heat exchanger and study of the losses.
- 9.- Energy balance during the heating process.
- 10.-Energy balance in the cooling unit.
- 11.-Mass balance in complete system, assessment of air losses.
- Other possibilities to be done with this Unit:
- 12.-Many students view results simultaneously.
 - To view all results in real time in the classroom by means of a projector or an electronic whiteboard.
 - **REQUIRED SERVICES**
- Electrical supply: single-phase 200 VAC 240 VAC/50 Hz or 110 VAC 127 VAC/60 Hz.

- Computer.

- 13.-Open Control, Multicontrol and Real Time Control. This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.
- 14.-The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- 15.-This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
- 16.-This unit can be used for doing applied research.
- 17.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 18.-Control of the TAC/CTS unit process through the control interface box without the computer.
- 19.-Visualization of all the sensors values used in the TAC/CTS unit process.
- Several other exercises can be done and designed by the user.

DIMENSIONS AND WEIGHTS

TAC/CTS:				
Unit:				
	-Dimensions:	8000 x 2000 x 2125 mm approx.		
		(314.9 x 78.74 x 83.66 inches approx.)		
	-Weight:	700 kg approx.		
		(1543 pounds approx.)		
Control-Interface Box:				
	-Dimensions:	490 x 450 x 470 mm approx.		
		(19.29 x 17.71 x 18.5 inches approx.)		
	-Weight:	20 kg approx.		
		(44 pounds approx.)		

ADDITIONAL RECOMMENDED ELEMENTS (Not included)

- PKNXM. KNX to MODBUS Conversion Gateway.

SIMILAR UNITS AVAILABLE

Offered in this catalog:

- TAC/CTS. Computer and Touch Screen Controlled AC Climate Chamber and Water Cooler.

Offered in other catalog:

- TACC. Computer Controlled Air Conditioning Unit with Climatic Chamber and Water Chiller.

SOFTWARE MAIN SCREENS

() Main software operation possibilities.

(I) Sensors displays, real time values, and extra output parameters. Sensors: ST=Temperature sensor. SC=Flow sensor. SH=Humidity sensor. SW=Wattmeter.

DActuators controls. Actuators: AR=Heating element. A-ENF=Water chiller. AB=Pump. AVE=Fan. AHUM=Humidifier.

(N) Channel selection and other plot parameters.

W Real time graphics displays.

Software for Sensors Calibration

Example of screen

Calibrate Window		٤
Simple Calibrate Fault settings		
Analog Input Channel Sensor Name ST-1 Averages 10 Calibration Units Full Scale 100 Current Offset 0,15599	Actuators	
Read Value Calibrated 0,766352 74,71852	AVE 100	
Gain & Offset Setting New Gain @ 0 New Offset @ 0 Restore Factory Gains & Factory Offsets New Offset		
Scaling Parameters		MIN
SAVE & EXIT		

The teacher and the students can calibrate the unit with a password provided by EDIBON. The teacher can restore the factory calibration any time.

Dry Bulb Temperature (°C)

LabVIEW

Some **real** results obtained from this Unit

Additionally to the main items (1 to 5) described, we can offer, as optional, other items from 6 to 9. All these items try to give more possibilities for:

a) Technical and Vocational Education configuration. (ICAI and FSS)

b) Multipost Expansions options. (MINI ESN and ESN)

a) Technical and Vocational Education configuration

(6) TAC/CTS/ICAI. Interactive Computer Aided Instruction Software.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

This software is optional and can be used additionally to items (1 to 6).

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc... so the teacher can know in real time the level of understanding of any student in the classroom.

Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.

- ESL-SOF. EDIBON Student Labsoft (Student Software).

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

For more information see **ICAI** catalogue. Click on the following link: www.edibon.com/en/files/expansion/ICAI/catalog

ECAL. EDIBON Calculations Program Package Main Screen

Explanation

TAC/CTS/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. It is useful for Technical and Vocational level.

The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.
- Faults affecting the actuators:
- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.
- Faults in the controls execution:
- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.

On/off faults:

- Several on/off faults can be included.

For more information see **FSS** catalogue. Click on the following link:

www.edibon.com/en/files/expansion/FSS/catalog

b) Multipost Expansions options

(B) MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously. It is useful for both, Higher Education and/or Technical and Vocational Education.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network.

This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit. Then, the number of possible users who can work with the same unit is higher than in an usual way of working (usually only one).

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.

- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

For more information see **MINI ESN** catalogue. Click on the following link: www.edibon.com/en/files/expansion/MINI-ESN/catalog

This unit can be integrated, in the future, into a Complete Laboratory with many Units and many Students. For more information see **ESN** catalogue. Click on the following link: <u>www.edibon.com/en/files/expansion/ESN/catalog</u>

Example of some screens

ESS FAULTS CONFIGURATION

ENABLED CHANGE STATE

SET ERROR CALIBRATION

CHANGE ORDER

A4-1

ANS-1 () ANS-2 ()

R CALIBRATION

OK

OK

WELCOME

START

FALL TS ENABLED

Unit

FALL T NO 1

Fault Order

<u>Main items</u> (always included in the supply)

Minimum supply always includes:

- ① Unit: TAC/CTS. Computer and Touch Screen Controlled AC Climate Chamber and Water Cooler.
- ② TAC/CTS/CIB. Control Interface Box.
- ③ TAC/CTS/CCSOF. PID Computer Control + Data Acquisition + Data Management Software.
- **@** Cables and Accessories, for normal operation.
- (5) Manuals.

*<u>IMPORTANT</u>: Under TAC/CTS we always supply all the elements for immediate running as 1, 2, 3, 4 and 5.

- **<u>Optional items</u>** (supplied under specific order)
- a) Technical and Vocational Education configuration
- **(6)** TAC/CTS/ICAI. Interactive Computer Aided Instruction Software.
- ⑦ TAC/CTS/FSS. Faults Simulation System.

b) <u>Multipost Expansions options</u>

- MINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.
- 𝕲 ESN. EDIBON Scada−Net Systems.

1) TAC/CTS. Unit:

TAC/CTS. Unit: Anodized aluminum frame and panels made of painted steel. The unit includes wheels to facilitate its mobility. Main metallic elements made of stainless steel. Diagram in the front panel with distribution of the elements similar to the real one. Tunnel made of stainless steel: Dimensions: 300 x 300 x 4000 mm. It has four windows (sight glasses) of 200 x 300 mm to observe interior of the tunnel. Adjustable gate to control the percentage of recycling air. Includes: Axial fan with computer controlled speed: Maximum flow of air: 130 I/sec. Maximum flow of air: 130 I/sec. Maximum speed: 2500 rpm. Heat exchanger consisting of a fin radiator through which cold water flows. Computer controlled heating element, Power: 3 kW. Computer controlled humiditier. Spraying flow: 0 – 1.5 I/h. Computer controlled humiditier. Spraying flow: 0 – 1.5 I/h. Control range: 5 °C – 35 °C. Cold water recycling pump: Maximum height: 20 m. Water tank. Capacity: 55 I. Climatic chamber suitable for people: Dimensions: 1125 x 1125 x 2100 mm. Muffler installed at the air inlet of the climatic chamber. Instuletion: 60 mm. Instrumentation: Twelve temperature sensors that make up six hygrometers (five strategically located alc Six "1" type temperature sensors (dry bulb).

Instrumentation: Instrumentation: Twelve temperature sensors that make up six hygrometers (five strategically located along the tunnel and one located in the climatic chamber): Six "J" type temperature sensors (dry bulb). Two "J" type temperature sensors to measure the cold water temperature at the inlet and outlet of the heat exchanger. Two "J" type temperature sensors to measure the water temperature before entering the water chiller. Two "J" type temperature sensors to measure the water temperature before entering the water chiller. Two "J" type temperature sensors, range: 0 – 300 l/s. Six humidity sensors, range: 0 – 100 %. Sensor of electrical power (Wattmeter) consumed by the water cooler as a whole **Computer and touch screen control:** PLC controller to control the air conditioning unit locally and remotely: Panasonic FP7 CPS31E CPU. Digital I/O modules: 16 digital inputs; Input range 0 V to 24 V. 16 digital outputs; Relay output. Analogue I/O modules: 16 digital inputs; Input range 0 V to 24 V. 16 digital outputs; Relay output. Analogue I/O modules: 16 digital inputs; Input range 0 V to 24 V. 16 digital outputs; Relay output. Analogue I/O modules: 2-Port Ethernet Switch. SCSI connector. USB, DB-9 Series or DB-25 (if required). HMI display: Touch Screen: Analog Resistive. Size: 10" 16:9 TFT. Resolution: 1024 x 600, WVGA. Colors: 64 K. Ethernet port. Communication protocol for remote control: MODBUS. Possibility of control and visualisation of parameters in BMS (Building Management System) via MODBUS, with the option of requesting an additional gateway for KNX to MODBUS (PKNXM) conversion and carrying out the control via ETS (Engineering Tool Software). **Psychrometric chart. The Data Acquisition and Control Software of the TAC/CTS unit allows:**

gateway for KNX to MODBUS (PKNAM) conversion and carrying out the control via ETS (Engineering Tool Software). **The Data Acquisition and Control Software of the TAC/CTS unit allows:** Real time representation of all measured magnitudes. Recording of testing measurements in function of time and generation of a file compatible with spreadsheet applications. Real time representation in the psychrometric chart of the humidity values obtained. Manual operation of the system, controlling every stage and setting stable conditions in each one, or an automatic operation, setting comfort conditions in the climatic chamber. The complete unit includes as well: Advanced Real-Time SCADA and PID Control. Open Control + Multicontrol + Real-Time Control. Specialized EDIBON Control Software based on LabVIEW. CTS, Computer and touch screen control. Calibration exercises, which are included, teach the user how to calibrate a sensor and the importance of checking the accuracy of the sensors before taking measurements. Projector and/or electronic whiteboard compatibility allows the unit to be explained and demonstrated to an entire class at one time. Capable of doing applied research, real industrial simulation, training course, etc. Remote operation and control by the user and remote control for EDIBON technical support, are always included. Totally safe, utilizing 4 safety systems (Mechanical, Electrical, Electronic & Software). Designed and manufactured under several quality standards. Optional ICAI software to create, edit and carry out practical exercises, tests, exams, calculations, etc. Apart from monitoring user's knowledge and progress reached. It is unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple Deprogress reached. This unit has been designed for future expansion and integration. A common expansion is the EDIBON Scada-Net (ESN) System which enables multiple students to simultaneously operate many units in a network.

Additional recommended element (Not included): - PKNXM. KNX to MODBUS Conversion Gateway.

PKNXM. KNX to MODBUS Conversion Gateway.
 TAC/CTS/CIB. Control Interface Box:
 The Control Interface Box is part of the SCADA system.
 Control interface box with process diagram in the front panel.
 The unit control elements are permanently computer controlled.
 Simultaneous visualization in the computer of all parameters involved in the process.
 Calibration of all sensors involved in the process.
 Real time curves representation about system responses.
 All the actuators' values can be changed at any time from the keyboard allowing the analysis about curves and responses of the whole process.
 Sheld and filtered signals to avoid external interferences.
 Real time PID control for parameters involved in the process imultaneously.
 Proportional control, integral control, based on the real PID mathematical formula, by changing the values, at any time, of the three control constants (proportional, integral and derivative constants).
 Open control allowing modifications, at any moment and in real time, of parameters involved in the process simultaneously.
 Three safety levels, one mechanical in the unit, another electronic in the control interface and the third one in the control software.

Three sately levels, one mechanical in the Unit, another electronic in the control interface and the finite one in the control software.
 TAC/CTS/CCSOF. PID Computer Control + Data Acquisition + Data Management Software:
 The three softwares are part of the SCADA system.
 Compatible with the industry standards.
 Flexible, open and multicontrol software, developed with actual windows graphic systems, acting simultaneously on all process parameters.
 Analog and digital PID control. PID menu and set point selection required in the whole work range.
 Management, processing, comparison and storage of data.
 Sampling velocity up to 250 KS/s (kilo samples per second).
 Calibration system for the sensors involved in the process.
 It allows the registration of the alarms state and the graphic representation in real time.
 Open software, allowing the teacher to modify texts, instructions. Teacher's and student's passwords to facilitate the teacher's control on the student, and allowing the access to different work levels.
 This unit allows the 30 students of the classroom to visualize simultaneously all the results and the manipulation of the unit, during the process, by using a projector or an electronic whiteboard.
 @ Cheles and Accessories for normal operation

(a) Cables and Accessories, for normal operation.

(5) Manuals:

This unit is supplied with 8 manuals: Required Services, Assembly and Installation, Interface and Control Software, Starting-up, Safety, Maintenance, Calibration & Practices Manuals.

Exercises and Practical Possibilities to be done with the Main Items

- 1.- Understanding and operation of the main components and stages of an air conditioning system: cooling, heating, humidification and drying.
- 2.- Understanding and use of the psychrometric chart of the air from measurements with dry bulb and wet bulb.
- 3.- Study and understanding of the influence of the cooling/drying stage in the air conditioning process.
- 4.- Study and understanding of the influence of the heating stage in the air conditioning process.
- 5.- Study and understanding of the influence of the humidifying/dehumidifying stage in the air conditioning process.
- 6.- Operation of the system elements and representation of the air conditioning complete cycle on a psychrometric chart.

Additional practical possibilities:

- 7.- Sensors calibration.
- 8.- Energy balance in the heat exchanger and study of the losses.
- 9.- Energy balance during the heating process.
- 10.-Energy balance in the cooling unit.
- 11.-Mass balance in complete system, assessment of air losses.
- Other possibilities to be done with this Unit:
- 12.-Many students view results simultaneously.

To view all results in real time in the classroom by means of a projector or an electronic whiteboard.

13.-Open Control, Multicontrol and Real Time Control.

This unit allows intrinsically and/or extrinsically to change the span, gains; proportional, integral, derivative parameters; etc, in real time.

- 14.-The Computer Control System with SCADA and PID Control allow a real industrial simulation.
- 15.-This unit is totally safe as uses mechanical, electrical/electronic, and software safety devices.
- 16.-This unit can be used for doing applied research.
- 17.-This unit can be used for giving training courses to Industries even to other Technical Education Institutions.
- 18.-Control of the TAC/CTS unit process through the control interface box without the computer.
- 19.-Visualization of all the sensors values used in the TAC/CTS unit process.
- Several other exercises can be done and designed by the user.

a) Technical and Vocational Education configuration

GTAC/CTS/ICAI. Interactive Computer Aided Instruction Software.

This complete software package consists of an Instructor Software (EDIBON Classroom Manager - ECM-SOF) totally integrated with the Student Software (EDIBON Student Labsoft - ESL-SOF). Both are interconnected so that the teacher knows at any moment what is the theoretical and practical knowledge of the students.

- ECM-SOF. EDIBON Classroom Manager (Instructor Software).

ECM-SOF is the application that allows the Instructor to register students, manage and assign tasks for workgroups, create own content to carry out Practical Exercises, choose one of the evaluation methods to check the Student knowledge and monitor the progression related to the planned tasks for individual students, workgroups, units, etc...so the teacher can know in real time the level of understanding of any student in the classroom. Innovative features:

- User Data Base Management.
- Administration and assignment of Workgroup, Task and Training sessions.
- Creation and Integration of Practical Exercises and Multimedia Resources.
- Custom Design of Evaluation Methods.
- Creation and assignment of Formulas & Equations.
- Equation System Solver Engine.
- Updatable Contents.
- Report generation, User Progression Monitoring and Statistics.
- ESL-SOF. EDIBON Student Labsoft (Student Software).

ESL-SOF is the application addressed to the Students that helps them to understand theoretical concepts by means of practical exercises and to prove their knowledge and progression by performing tests and calculations in addition to Multimedia Resources. Default planned tasks and an Open workgroup are provided by EDIBON to allow the students start working from the first session. Reports and statistics are available to know their progression at any time, as well as explanations for every exercise to reinforce the theoretically acquired technical knowledge.

Innovative features:

- Student Log-In & Self-Registration.
- Existing Tasks checking & Monitoring.
- Default contents & scheduled tasks available to be used from the first session.
- Practical Exercises accomplishment by following the Manual provided by EDIBON.
- Evaluation Methods to prove your knowledge and progression.
- Test self-correction.
- Calculations computing and plotting.
- Equation System Solver Engine.
- User Monitoring Learning & Printable Reports.
- Multimedia-Supported auxiliary resources.

TAC/CTS/FSS. Faults Simulation System.

Faults Simulation System (FSS) is a Software package that simulates several faults in any EDIBON Computer Controlled Unit. The "FAULTS" mode consists in causing several faults in the unit normal operation. The student must find them and solve them. There are several kinds of faults that can be grouped in the following sections:

Faults affecting the sensors measurement:

- An incorrect calibration is applied to them.
- Non-linearity.
- Faults affecting the actuators:
- Actuators channels interchange at any time during the program execution.
- Response reduction of an actuator.
- Faults in the controls execution:
- Inversion of the performance in ON/OFF controls.
- Reduction or increase of the calculated total response.
- The action of some controls is annulled.
- On/off faults:
- Several on/off faults can be included.

Tender Specifications (for optional items)

b) Multipost Expansions options

BMINI ESN. EDIBON Mini Scada-Net System for being used with EDIBON Teaching Units.

MINI ESN. EDIBON Mini Scada-Net System allows up to 30 students to work with a Teaching Unit in any laboratory, simultaneously.

The MINI ESN system consists of the adaptation of any EDIBON Computer Controlled Unit with SCADA and PID Control integrated in a local network. This system allows to view/control the unit remotely, from any computer integrated in the local net (in the classroom), through the main computer connected to the unit.

Main characteristics:

- It allows up to 30 students to work simultaneously with the EDIBON Computer Controlled Unit with SCADA and PID Control, connected in a local net.
- Open Control + Multicontrol + Real Time Control + Multi Student Post.
- Instructor controls and explains to all students at the same time.
- Any user/student can work doing "real time" control/multicontrol and visualisation.
- Instructor can see in the computer what any user/student is doing in the unit.
- Continuous communication between the instructor and all the users/students connected.

Main advantages:

- It allows an easier and quicker understanding.
- This system allows you can save time and cost.
- Future expansions with more EDIBON Units.

The system basically will consist of:

This system is used with a Computer Controlled Unit.

- Instructor's computer.
- Students' computers.
- Local Network.
- Unit-Control Interface adaptation.
- Unit Software adaptation.
- Webcam.
- MINI ESN Software to control the whole system.
- Cables and accessories required for a normal operation.

* Specifications subject to change without previous notice, due to the convenience of improvement of the product.

C/ Julio Cervera, 10-12-14. Móstoles Tecnológico. 28935 MÓSTOLES. (Madrid). ESPAÑA - SPAIN. Tel.: 34-91-6199363 Fax: 34-91-6198647 E-mail: edibon@edibon.com Web: **www.edibon.com**

Edition: ED01/20 Date: May/2020 REPRESENTATIVE: